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ABSTRACT 

Rarely observed carbopalladation of the cyano group has been investigated. Synthetic 

methodology for 2,3-diarylindenones by the palladium-catalyzed annulation of aikynes with 

2-iodoarenenitriles has been developed. This methodology has also been adapted to the 

annulation of bicyclic olefins. The reaction affords 2,3-diarylindenones and polycyclic 

aromatic ketones in very good to excellent yields and tolerates a number of functional 

groups, making it an efficient synthetic route to these compounds. The reaction is believed 

to proceed via (1) oxidative addition of the aryi iodide to Pd(0), (2) arylpalladium addition to 

the carbon-carbon multiple bond, (3) addition of the resulting vinylic or alkylpalladium 

species across the triple bond of the cyano group to produce an iminopalladium moiety, and 

(4) hydrolysis of the imine intermediate. A model accounting for the electronic effects of 

substituents on the aromatic ring of the nitrile has also been proposed. 

The palladium-catalyzed annulation of aikynes with iodoarenes containing a cyano group 

has been extended to the synthesis of 3,4-disubstituted 2-aminonaphthalenes. (2-

Iodophenyl)acetonitrile reacts with a variety of internal aikynes to afford 2-

aminonaphthalenes in high yields. In many cases, the regioselectivity of this reaction is 

excellent. The scope and limitations of this process, which proceeds via a mechanism similar 

to the reaction between 2-iodoarenenitriles and aikynes, have been studied. When introduced 

into the reaction, certain hindered propargylic alcohols have been found to afford 1,3-

benzoxazine derivatives rather than the expected 2-aminonaphthalenes. The involvement of 

trialkylamine bases in the formation of these heterocyclic compounds has been established 

and a mechanism for this transformation has been proposed. 

A general and efficient procedure for the synthesis of 2,2-disubstituted indanones by the 

palladium-catalyzed cyclization of 3-(2-iodoaryl)propanenitriles has been developed. This 

process is also based on intramolecular carbopalladation of the cyano group. A variety of 

indanones have been prepared in high yields from readily available starting materials 

containing various functional groups that are compatible with the reaction conditions. The 

reaction is not limited to the synthesis of indanones as other benzocyclic ketones, as well as a 

number of substituted cyclopentenones, have been synthesized by this methodology. 
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GENERAL INTRODUCTION 

The carbon-nitrogen triple bond represents one of the classical functional groups of 

organic chemistry. A unique combination of unsaturation, polarizability and low steric 

demand has made nitriles extremely attractive for synthetic purposes. The cyano group can 

be easily transformed into other functionalities. Hydrolysis and alcoholysis of nitriles can 

lead to amides, esters and carboxylic acids; reduction can afford aldehydes and amines; 

imines and ketones are produced when nitriles are treated with organometallic reagents. 

Even when the cyano group itself is not modified in the reaction, its presence in the molecule 

allows for such synthetically useful procedures as halogenations and alkylations of the a-

carbon in aliphatic nitriles, or directed o-metallation in aromatic nitriles. 

Adding to the attractiveness of the cyano group is its ease of introduction into molecules. 

Alkanenitriles are prepared via nucleophilic substitution in halides, sulfonates, alcohols and 

amines, addition of HCN and related reagents to carbon-carbon or carbon-heteroatom 

multiple bonds, elimination from carbonyl and carboxylic acid derivatives, as well as nitro 

and amino compounds. The acidity of the protons adjacent to the cyano group provides an 

easy opportunity to convert a relatively simple aliphatic nitrile into a more complex one via 

alkylation and related reactions. The synthesis of aromatic nitriles can be accomplished by 

the cyanation of aromatic halides (e.g., Rosenmund-von Braun reaction) or arenediazonium 

salts (Sandmeyer reaction). Other routes to arenenitriles include transformations of aromatic 

carbonyl or carboxy compounds, as well as the functionalization of benzonitrile and its 

derivatives. 

The utility of the cyano group in heterocyclic synthesis is probably surpassed only by the 

amino group. The high electron density present in the cyano group makes it an excellent 

candidate for a variety of electrophilic additions, whereas its strong dipole moment allows for 

facile nucleophilic additions. Thus, nitriles have been used in the synthesis of a wide variety 

of hetero- and carbocyclic systems. Many of these syntheses are catalyzed by various 

transition metals and involve addition of organometallic species across the triple bond of the 

nitrile. However, examples of carbopalladation of the cyano group are extremely rare. 
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The Larock group has recently developed a number of palladium-catalyzed annulations 

of internal aikynes by aryl iodides containing a functional group in the ortho position. In this 

dissertation, the intramolecular addition of organopalladium species to the cyano group has 

been investigated and developed into efficient synthetic methodology for the construction of 

carbocyclic systems. 

Dissertation Organization 

This dissertation is divided into three chapters. Each chapter is ajournai paper presented 

with its own introduction, results and discussion, experimental section, conclusions, 

acknowledgement and references. 

Chapter 1 describes the synthesis of 2,3-diarylindenones and related aromatic ketones by 

the palladium-catalyzed annulation of alkyne- and bicyclic alkenes with 2-iodoarenenitriles. 

The scope and limitations of this methodology, based on carbopalladation of the cyano 

group, are explored. The effect of substituents on the aromatic ring of the nitrile on the 

success of the annulation is explained by the requirement that the intermediate 

organopalladium species possess sufficient nucleophilic character for attack on the cyano 

group. A reaction mechanism consistent with this effect is proposed. 

Chapter 2 deals with the palladium-catalyzed reaction of internal aikynes with (2-

iodophenyl)acetonitrile. This annulation is related mechanistically to the process examined 

in Chapter 1, but results in the formation of 3,4-disubstituted 2-aminonaphthalenes. The 

preparation of various 2-aminonaphthalenes in good yields is described and regioselectivity 

issues are discussed. Annulation of hindered propargylic alcohols in the presence of 

trialkylamines unexpectedly affords 1,3-benzoxazine derivatives. A mechanism for this 

transformation is proposed, which involves participation of the trialkylamine base employed 

in the reaction. 

Chapter 3 extends the scope of the nitrile carbopalladation methodology to the cyclization 

of (o-(2-iodoaryl)alkanenitriles. 2,2-Disubstituted benzocyclic ketones are synthesized in 

high yields from readily prepared starting materials. The reaction is also applicable to the 
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synthesis of substituted cyciopentenones from appropriate vinylic substrates bearing a cyano 

group. The limitations of this methodology are discussed. 

Finally, following some general conclusions, the *H and l3C NMR spectra of all 

previously unknown starting materials and palladium-catalyzed reaction products are 

compiled in Appendices A-C of this dissertation. 
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CHAPTER 1. SYNTHESIS OF 2,3-DIARYLINDENONES AND POLYCYCLIC 

AROMATIC KETONES VIA Pd-CATALYZED ANNULATION OF 2-

IODOARENENITRILES 

A paper to be submitted to the Journal of Organic Chemistry 

Alexandre A. Pletnev, Qingping Tian, and Richard C. Larock 

Department of Chemistry, Iowa State University. Ames, Iowa 50011 

Abstract 

Convenient and efficient syntheses of 2,3-diarylindenones and polycyclic aromatic 

ketones have been developed employing the carbopalladation of nitriles. The reaction 

represents one of the first examples of the addition of an organopalladium moiety to the 

carbon-nitrogen triple bond of a nitrile. 2-Iodobenzonitrile, its derivatives, and various 

heterocyclic analogues undergo palladium(0)-catalyzed annulation onto diarylacetylenes or 

bicyclic alkenes to afford 2,3-diarylindenones and polycyclic aromatic ketones in very good 

to excellent yields. The reaction is compatible with a number of functional groups. A 

reaction mechanism, as well as a model accounting for the electronic effects of substituents 

on the aromatic ring of the nitrile, is proposed. 

Introduction 

The development of new annulation processes is one of the most challenging and 

important quests in organic synthesis. Annulation is one of the most efficient and 

economical ways of creating cyclic molecules.1 Combining two or more independent acyclic 

moieties to form several bonds in one process potentially provides an opportunity to rapidly 

synthesize complex molecules without having to spend time and resources on the isolation of 

intermediates and their reintroduction into subsequent steps. This opportunity is especially 
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attractive in this age of high-throughput and combinatorial chemistry.2 Equally important is 

the minimization of waste brought about by a decrease in the amounts of reagents and 

solvents required for a single-step operation as opposed to a multi-step endeavor.3 

Among many transition metals used in organic synthesis, palladium is particularly useful 

as it offers the most versatile possibilities for carbon-carbon bond formation.4 Palladium 

reagents have been used extensively to prepare various carbo- and heterocyclic compounds,5 

both by cyclic carbopalladation and annulation.6 One of the most important factors 

contributing to such widespread application of palladium catalysts is their tolerance of most 

important organic functional groups.4 However, as more research in palladium-mediated 

organic methodology is being conducted, new reaction conditions are being discovered that 

lead to previously unknown palladium-catalyzed reactions with "unreactive" functional 

groups.7 

The cyano group has long been considered inert toward organopalladium reagents. 

Palladium chloride bis-acetonitrile and bis-benzonitrile are widely used catalysts, and 

acetonitrile is one of the most commonly employed solvents in palladium-mediated 

reactions.43'8 In most such reactions, the nitriles are not incorporated into the molecular 

structure of the products.9 In many cases, substrates bearing a cyano group can undergo 

palladium-mediated processes that lead to products in which the cyano group remains intact. 

In fact, the palladium-catalyzed cyanation of aryl halides is a widely used synthetic approach 

to arenenitriles, which, once formed in the reaction, are not modified in any way despite the 

presence of organopalladium intermediates.10 Other examples of the palladium-catalyzed 

introduction of a cyano group into a product include the cyanocarbonylation of 

iodobenzene,11 cyanosilylation of aikynes,12 and numerous reactions of nitrile-containing 

organic substrates, e.g., the cross-coupling of aryl halides with terminal acetylenes13 or 

organometallic reagents,14 a-allylation15 and decarboxylation of a-cyanoesters.16 

Palladium-mediated reactions that do modify the nitrile functionality9"17 usually do not 

involve carbopalladation of the cyano group. However, there are rare examples of the 

carbopalladation of nitriles. Thus, Yang et al. have described the palladium-catalyzed 

arylation of a cyano group in the intramolecular cyclization of 2-bromoarylalkenenitriles,l8a b 
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and Cheng has reported the cyano group transfer from solvents to aryl halides mediated by 

palladium and zinc species.18c 

We have recently reported that the intramolecular carbopalladation of the cyano group in 

2-iodobenzonitrile and 2-iodophenylacetonitrile provides a new synthetic route to indenones, 

2-aminonaphthalenes and related compounds.19 At this time, we wish to report the full 

details of our investigation of the carboannulation of internal aikynes and bicyclic alkenes by 

2-iodoarenenitriles that leads to 2,3-diarylindenones and related polycyclic aromatic ketones 

(eq 1). 

* r^-r ^ 

Indenones and their derivatives have been employed as fungicides and fermentation 

activators.20 Their potentially useful biological activity as binding agents for estrogen 

receptors has been used to study the structure of the receptor's binding site and the 

orientation of the site's nonsteroidal ligands.21 Indenones also serve as valuable precursors 

and intermediates in the synthesis of natural products (e.g. steroids and gibberellins), 

indanones, indenes, naphthols and other compounds.20"2 

Traditionally, indenones have been synthesized via Friedel-Crafts-type cyclizations or 

addition of organometallic reagents to l,3-indandiones.2l:u2j Many transition metal reagents 

and catalysts have been employed in indenone preparations in recent years.20,223 Palladium-

catalyzed reactions leading to indenones (including annulation approaches) have also found a 

place in synthetic organic methodology.24 One such procedure developed in this laboratory 

involves the annulation of internal aikynes with 2-halobenzaldehydes.20 Although effective 

and reasonably general, this procedure could still be improved if more stable starting 

materials could be used in place of easily oxidized aldehydes. 

(1) 
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Results and Discussion 

Ongoing research in our group on palladium-catalyzed annulation methodology63-25 

prompted us to examine 2-iodobenzonitrile as a possible substrate for annulation onto 

diphenylacetylene to produce 2,3-diphenyl-1 -indenone (1, eq 2). Encouraged by the success 

of the intramolecular reaction of an aldehyde, a group normally inert toward 

organopalladium species,7 we envisioned that a cyano group might serve as a neighboring 

functional group in this reaction and that the vinylpalladium intermediate might add across 

the carbon-nitrogen triple bond (see the later mechanistic discussion). 

rrCN + Ph—=—Ph -ph (2) 
lx^kl ~~ H20 

Under our standard reaction conditions developed for the synthesis of fluorenes,26 2-

iodobenzonitrile reacted with diphenylacetylene to afford the fluorene product 2 in 63% yield 

(eq 3). In the absence of PPhs, the reaction furnished 2 in 56% yield. When the solvent was 

changed from DMF to 9:1 DMF-water, to our delight, the major product (28%) was found to 

be the target indenone 1 (eq 2). 

f^Y'CN 510%PPha)2 NC
V 

Vi, + 2NaOAc' ^ ^ 
1 o-Bu4NCI 

DMF, 100 °C 

Based on our previous research on alkyne annulation chemistry,63,253 we propose the 

following mechanism for the formation of 1 from 2-iodobenzonitrile and diphenylacetylene 

(Scheme 1). Oxidative addition of 2-iodobenzonitrile to Pd(0), formed in situ from Pd(H), is 

followed by diphenylacetylene insertion that leads to the vinylpalladium intermediate I. The 

latter then adds across the carbon-nitrogen triple bond of the neighboring cyano group to 

produce the iminopalladium intermediate H,27 which hydrolyzes to the indenone 1. 
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+ NHg 

Scheme 1 

Pd(0) 

c "^a 
Pd(ll) ^CN 

^^Pdl 

CN 

I 

II Ph 

Ph Ph 

Reduction of the Pd(II) species produced is required to afford a catalytic process and occurs 

at some point in the reaction. 

Since the yield of the reaction was low, substantial optimization efforts were undertaken 

to improve the yield of this annulation (Table 1). Drawing on the findings of concurrent 

work on the optimization of a similar annulation of 2-iodophenylacetonitrile,19 the details of 

which will be reported in due course, we ran the reaction using catalytic Pd(OAc)i under 

conditions described in Table 1, entry 1. This procedure led to a 30% yield of 1. The yield 

did not improve upon addition of two equivs of water, nor upon reducing the amount of the 

base (entries 2 and 3, respectively). Using aqueous DMF as a solvent resulted in higher 

yields of 1 (entries 4 and 5). The addition of triphenylphosphine, intended to facilitate the 

initial reduction of Pd(II) to Pd(0), as well as to serve as a Iigand for palladium, had no effect 

on the reaction (entry 6). We then decided to use a Pd(0) catalyst. Employing 10% Pd(dba)? 

raised the yield of 1 to 62% (entry 7). An almost identical yield was obtained when n-

BiuNCl was omitted, proving that a chloride source was unnecessary for the annulation 

(entry 8). Since one equiv of ammonia was supposedly forming in the reaction (Scheme 1), 

we questioned whether using two equivalents of triethylamine was required, and studied the 

effect of the amount of base on the reaction yield (entries 9-13). The best results were 
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Table 1. Optimization of the Pd-Catalyzed Annulation of Diphenylacetylene by 1 

Iodobenzonitrile (eq If 

entry catalyst 
additive 
(equiv) 

EtsN 
equiv 

solvent time 
(h) 

% isolated 
vield of 1* 

1 5% Pd(OAc)2 n-BiuNCl (1) 3 DMF 48 30 

2 5% Pd(OAc): n-BmNCl (1) 3 DMF 48 25r 

3 5% Pd(OAc): /1-BU4NCI (1) 2 DMF 48 30 

4 5% Pd(OAc): n-BmNCKl) 2 4:1 DMF-H20 24 45 

5 5% Pd(OAc): n-BoiNCKl) 2 9:1 DMF-HiO 24 42 

6 5% Pd(OAc): 71-BU4NCI (1), 

PPh3 (0.2) 

2 9:1 DMF-HiO 24 42 

7 10% Pd(dba): n-BmNCl (I) 2 9:1 DMF-HzO 24 62 

8 10% Pd(dba): - 2 9:1 DMF-H20 24 60 

9 10% Pd(dba)2 - - 9:1 DMF-HiO 48 11' 

10 10% Pd(dba): - 0.5 9:1 DMF-HiO 24 10 

11 10% Pd(dba)2 - 1 9:1 DMF-HiO 24 74 

12 10% Pd(dba): - 2 9:1 DMF-H20 72 59 

13 10% Pd(dba)2 - 3 9:1 DMF-H20 24 48 

14 10% Pd(dba)2 - 1 9:1 DMF-H20 13 61(71)'' 

15 10% Pd(dba)2 - 1 9:1 DMF-HzO 17 66(70/ 

16 10% Pd(dba)2 - 1 9:1 DMF-H20 48 38' 

17 10% Pd(dba)2 Ag3P04 (0.4) I 9:1 DMF-H20 24 trace 

18 10% Pd(dba)2 AgN03 (1.2) 1 9:1 DMF-HzO 24 trace 

19 10% Pd(dba)2 T1PF6 (1.2) 1 9:1 DMF-HzO 24 25(40/ 

20 10% Pd(dba)2 PPh3 (0.2) 1 9:1 DMF-HzO 24 62 

21 10% Pd(dba)2 TPPTS (0.2/ 1 9:1 DMF-HzO 24 66 

" All reactions were run with 3 equivs of diphenylacetylene at 100 °C unless specified otherwise. 6 All yields in 
parentheses are corrected for unreacted starting material. r Two equivs of water were added to the reaction 
mixture. d Incomplete conversion of 2-iodobenzonitrile. ' This reaction was run at 80 °C. /TPPTS = tris(3-
sulfonatopheny!)phosphine. sodium salt. 
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obtained when we employed only one equiv of triethylamine (entry 11), whereas using both 

lesser and greater amounts was detrimental to the success of the annulation. It was also 

established that the reaction required a full 24 hours, since using shorter reaction times 

resulted in incomplete consumption of the 2-iodobenzonitrile (entries 14 and 15). Lowering 

the reaction temperature slowed the annulation considerably and led to only a 38% yield of 1 

after 48 h (entry 16). Finally, we studied the effect of some additives on the reaction (entries 

17-21). Hoping that a cationic palladium intermediate similar to I (Scheme 1) might 

coordinate to the carbon-nitrogen bond more strongly and thus affect the carbopalladation 

step favorably, we employed silver and thallium salts known to sequester halide anions from 

palladium complexes (entries 17-19),"* only to find that their use decreased the yield of the 

indenone 1. Using phosphine ligands resulted in lower yields compared to the phosphine-

free annulation (entries 20 and 21). 

We also conducted several experiments designed to elucidate the identity of the reagent 

responsible for the reduction of Pd(II) back to Pd(0) (Table 2). After analysis of the reaction 

conditions, we focused on two possibilities. Under our reaction conditions, it seemed 

plausible that DMF could react with water to produce formic acid, which is known to reduce 

Pd(II) species.29 Alternatively, the reduction could be effected by triethylamine since 

alkylamines containing a-carbon-hydrogen bonds are also capable of reducing Pd(II) 

complexes.30 Substitution of triethylamine by collidine, a non-reducing amine, using our 

best reaction conditions resulted in a sharply lower yield of the annulation product (Table 2, 

entry 2). However, when we employed DMA instead of DMF (entry 3), the yield of 1 

Table 2. Effect of the Solvent and Base on the Annulation (eq 2f 

entry base solvent time (h) % yield of 1 

1 Et3N DMF 24 74 

2 collidine DMF 48 11 

3 Et3N DMA 24 69 

4 i-PrzNEt DMF 24 57 

" Reactions were run with 3 equivs of diphenylacetylene. 10 mol % of Pd(dba)2, and 1 
equiv of the base in 9:1 solvent-water mixture at 100 °C. 
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remained virtually unaffected, which strongly discounts the possible role of DMF in the 

reduction. Obtaining 1 in a 57% yield in the experiment using i-PriNEt instead of EtaN 

(entry 4) seems to support our hypothesis that the alkylamine base may be the reagent 

actually reducing Pd(II) to Pd(0) in the catalytic cycle in Scheme 1. The lower yield in entry 

4 is presumably caused by fewer a-C-H bonds available for the reduction in i-Pr^NEt 

compared to Et;N or simply the greater difficulty Pd(II) is going to have in coordinating to 

this more hindered amine. 

We propose the following two tentative mechanisms for the reduction of Pd(II) by 

triethylamine (Scheme 2). A palladium® species, such as A, may undergo insertion into 

the a-C-H bond activated by the nitrogen in EtsN (pathway a). Examples of such insertion 

have been reported.31 Following reductive elimination of the organic product, the (a-

aminoalkyOpalladium complex B is formed. Fragmentation of B leads to a Pd(0) species, 

which returns to the catalytic cycle, and an iminium salt C, generation of which has also been 

proposed as the key step in Pd-catalyzed transformations of trialkylamines.31 Alternatively, 

Scheme 2 

H 

+ 
NPdX 

C 
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A could coordinate to the nitrogen in Et;N and then undergo pseudo (3-hydride elimination to 

afford C and an organopalladium species D, which produces Pd(0) upon reductive 

elimination (pathway b)?2 

Using our best reaction conditions (Table 1, entry 11), we proceeded to test the 

applicability of our procedure to the annulation of other aikynes (eq 4). The annulation of 2-

iodobenzonitrile onto 1-phenyl-1-propyne resulted in the formation of an inseparable 1:1 

mixture of regioisomeric indenones 3 and 4 in a combined 32% yield after a 48 h reaction 

period (Table 3, entry 1). Only a trace amount of 2,3-di-n-propyl-l-indenone (5) was 

detected in the reaction of 4-octyne (entry 2), with about 40% of the starting 2-

iodobenzonitrile still present after 48 h. Indenone 6 was formed in low yield when 2-

iodobenzonitrile was annulated onto 4,4-dimethyl-2-pentyne (entry 3). The annulation of 2-

methyl-4-phenyl-3-butyn-2-ol afforded the expected indenone 7 in an 8% yield along with 3-

phenyl-2-(2-propenyl)-l-indenone (8), which was apparently derived from 7 (entry 4). This 

reaction also suffered from low conversion of the starting nitrile. Finally, we were able to 

obtain 2-rerr-butyl-3-(terr-butylethynyl)-l-indenone (9) in a 16% yield from the reaction 

between 2-iodobenzonitrile and 2,2,7,7-tetramethyl-3,5-octadiyne (entry 5). The reasons 

behind the poor yields in the annulation of aikynes other than diphenylacetylene are unclear 

considering that these aikynes have readily participated in many other palladium-mediated 

annulation reactions.6"™0-253 Although we have made no attempt to do so, we believe that it 

should be possible to optimize the reaction conditions for each individual alkyne and get 

significantly improved yields. 

We have also screened a large number of different olefins in an attempt to extend the 

nitrile annulation methodology to include alkenes and dienes. No annulation products were 

observed in the reactions of 2-iodobenzonitrile with cis-stilbene, indene, 3,4-dihydro-

naphthalene, 2,3-dioxene, /V-phenylmaleimide, undeca-1,2-diene, I -phenylpropa-1,2-diene, 

1,3-cyclohexadiene, and 1,4-cyclohexadiene. However, the reaction of 2-iodobenzonitrile 

10% Pd(dba)2 

1 Et3N 
O 

(4) 
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Table 3. Annulation of 2-Iodobenzonitrile onto Various Aikynes (eq 4)" 

entry alkyne 
time 
(h) 

product(s) % 
yield 

Ph - — CHg 48 0 p̂h : CX^CH3 

_ CH3 Ph 
32 6 

n-P r—— »Pr 48 Cn -̂pr 

/f-Pr 
trace 

H3C-S-C(C^)3 48 

Ph—=—C(CH^)2OH 48 

CH3 

C(CH3)3 

Or C(CH3)2OH + 

Ph Ph 
8 +6r 

(HJCHC = — C(CHA)3 24 C(CH 3)3 

C(CH3)3 

16 

" All reactions were run with 3 equivs of the alkyne, 10 mol % of Pd(dba)i and 1 equiv of Et3N in a 9:1 
DMF-water mixture at 100 °C. 6 Isolated as a 1:1 inseparable mixture of isomers 3 to 4. r Incomplete 
conversion of 2-iodobenzonitrile. 

with acenaphthylene afforded a Heck type product 10 in 57 % yield (eq 5). We believe that 

the latter reaction follows our proposed annulation mechanism, but the benzylic palladium 

intermediate formed undergoes solvolysis faster than it can add to the cyano group. The 

driving force behind this solvolysis is probably the formation of a stable, highly delocalized 

benzylic cation, which, upon losing a proton, leads to 10. 

a™- cat Pd 
(5) 
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During the course of our study of the scope of the nitrile annulation chemistry, we have 

found that bicyclic alkenes undergo facile annulation by 2-iodobenzonitrile (eq 6). 

Palladium hydride elimination during annulation, which is likely the major factor in the 

failure of other olefins and alkylacetylenes, is prevented in bicyclic alkenes by the inability 

of palladium to align in a czs-fashion with the bridgehead hydrogen. Such elimination would 

also produce a very strained bridgehead olefin. 

n =  1 , 2  

We have also observed the beneficial effect of increasing the temperature on the yields of 

this reaction (Table 4). Thus, polycyclic ketone 11 was obtained in 85% yield when the 

annulation was run at 100 °C. The yield improved to 93% when the temperature was raised 

to 130 °C (entry 1). The expected exo stereochemistry of 11 was confirmed by comparing its 

*H NMR spectrum to the literature data.33 A high reaction temperature proved even more 

beneficial for the annulation of 2-iodobenzonitrile onto bicyclo[2.2.2]octene (entry 2). Not 

only did it increase the yield of the product ketone 12, it also enhanced the reaction rate, 

which was sluggish at 100 °C, presumably because of steric hindrance around the double 

bond of the olefin. Functionalized polycyclic ketone 13 was obtained from the 

corresponding norbomene derivative in 89% yield (entry 3), demonstrating the nitrile 

annulation's tolerance of the ester functionality. The reaction of benzonorbomadiene 

(prepared from benzyne and cyclopentadiene by a Diels-Alder cycloaddition)34 at 100 °C was 

slow, but this problem was rectified by raising the temperature (entry 4). Repeated attempts 

to carry out a double annulation of 2-iodobenzonitrile onto norbomadiene failed as the nitrile 

was recovered even at a high temperature and after a prolonged reaction time. We believe 

that norbomadiene may have formed a strong complex with the palladium catalyst, thus 

removing the latter from the reaction.35 This could also explain the low reactivity of 

benzonorbomadiene (entry 4), which is capable of forming a similar complex with Pd. 
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Table 4. Effect of the Temperature on the Annulation of Bicyclic Alkenes and 

Aikynes (eqs 4 and 6f 

entry substrate product(s) 
% yield 

at 100 °C at 130 °C 

/b 

CO2CH3 

COJCHG 

Ph — Ph 

Ph — CH3 

Oib 
11 

0^6 
12 

Cc% CO2CH3 
13 CO2CH3 

Cc -̂ph : 0 -̂cH3 

_ CH3 PH 

85 

55 

70 

74 

32 

93 

82 

89 

59 

96 

34 

" See the Experimental Section for the reaction conditions. 6 The reaction time was 72 h. r The yield was 
not determined due to the low conversion of the 2-iodobenzonitrile after 48 h. d Isolated as a 1:1 
inseparable mixture of isomers 3 to 4. 

Similarly, elevating the reaction temperature improved the yield of 2,3-diphenylindenone 

(1), which was previously obtained in 74% yield using our original reaction conditions 

(Table 1, entry 11), to almost a quantitative yield (Table 4, entry 5). However, no 

improvement was observed when 2-iodobenzonitrile was allowed to react with 1-phenyl-l-

propyne. The annulation at 130 °C afforded an inseparable 1:1 mixture of the two possible 
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regioisomers 3 and 4 (entry 5) in a yield almost identical to that obtained at a lower 

temperature (Table 3, entry 1). 

Based on the aforementioned results, our optimal annulation conditions are as follows: 

0.25 mmol of 2-iodobenzonitrile, 3 equivs of diphenylacetylene or bicyciic alkene, 10 mol % 

of Pd(dba>2, 1 equiv of EtgN, and 5 ml of 9:1 DMF-water as the solvent at 130 °C for 24 h. 

This procedure is expected to be a useful method for the synthesis of various 2,3-

diarylindenones other than 1, as illustrated by the 79% yield of indenone 15 we have 

obtained (eq 7). 

We have also found that the analogous annulation of 2-(2-iodophenyl)-2-

methylpropanenitrile onto diphenylacetylene affords a high yield of the expected six-

membered ring aromatic ketone 16 (eq 8). Mirroring our observations in the indenone 

synthesis, regioisomeric naphthenones 17 and 18 are formed in 18 and 11% yields, 

respectively, when the unsymmetrical alkyne 1-phenyl-1-propyne is used in the annulation. 

17 (R1 = Ph, R2 = CHa) 18% 
18 (R1 = CHg, R2 = Ph) 11% 

Having established the alkyne and olefin limitations of the nitrile annulation 

methodology, we set out to explore the range of nitrile-containing components we might 

employ. Several strategies were used to synthesize a series of aromatic o-iodoarenenitrile 

starting materials. 

O 

(7) 

(8) 

16 (R1, R2 = Ph) 96% 
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Using the synthetically underutilized ability of the cyano group to direct o-lithiation,36 we 

successfully adopted the procedure of Fraser and Savard for the synthesis of o-iodoarene-

nitriles (eq 9).37 Nitrile-containing substrates 19-23 were prepared in good yields by o-

lithiation of the corresponding arenenitriles with lithium tetramethylpiperidide (LiTMP), 

followed by quenching with iodine (Table 5, entries 1-5). 2,3-Dicyano-1,4-diiodobenzene 

(23) was obtained from sequential introduction of each iodine substituent into the molecule 

(entry 5). The procedure was also applicable to the synthesis of heterocyclic o-

iodoarenenitriies 24-26 (entries 6 and 7). o-Lithiation-iodination of 3-cyanopyridine 

produced a hard-to-separate mixture of regioisomeric 24 and 25 that were partially isolated 

by column chromatography. 

gr" r.iC 

We also prepared two series of regioisomeric heterocyclic substrates designed to probe 

the effect of steric hindrance and electron density in the indole ring on the nitrile annulation. 

Substituted iodoindolecarbonitriles 27 and 28 were synthesized as shown in Schemes 3 and 

4, respectively. Depending on the immediate availability of the starting materials, 2-cyano-

Scheme 3 

QL> c°aH—OLVcn J* Qrw, 
H H H 

I 

VrM _• r T% 
N CN — UL >"CN 

H X 

27a 27b: X = CHg 
27c: X = SOfcPh 

(a) SOCI2, ether, r.t.; (b) NH3, ether, r.t.; (c) POCI3, reflux; (d) LAH, ether, r.t.; (e) 
Mn02, ether, r.t.; (f) H2NNMe2, benzene, reflux; then Mel; (g) MeONa, MeOH, 
reflux; (h) KOH, l2, DMF, r.t.; (i) NaH, DMF, 0 °C; then Mel or PhS02CI, r.t. 
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Table 5. Preparation of o-Iodoarenenitriles by Nitrile-Directed o-Lithiation (eq 9)" 

entry substrate product(s) % yield 

CN 

CN 

CN çr 
OCH, 

.JOT" 

CN 

6r 

Cr 

cf 

CN 

CN 

19 

20 

ÇC 
OCH, 

JCX 

21 

CN 

22 

CN 

'xX" 
23 1 

èr : cc 
24 

N 
25 

cC 

63 

60 

50 

72 

74" 

50r 

87 

" See the Experimental Section for the reaction conditions. 6 A two-step reaction sequence was employed 
here. r Isolated as a 1:1 hard-to-separate mixture of isomers 24 to 25. 

indole was obtained in good yield from either indole-2-carboxylic acid or ethyl indole-2-

carboxylate and then iodinated to afford 27a, which was derivatized at the nitrogen atom to 

give 27b and 27c (Scheme 3). 2-Iodoindole-3-carbonitrile 28a was prepared from 2-

iodoindole and was then functionalized to produce indoles 28b and 28c (Scheme 4). An 

alternative method starting with indole-3-carbonitrile worked well for the JV-methyl 

compound, but o-lithiation-iodination of the N-sulfonylated precursor to hopefully produce 

28c afforded a mixture of products that had to be separated. 
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Scheme 4 

CN 

H 
a 

CN CN 

H 
b 

CN 

b 

28a 

H X 
28b: X = CH3 
28c: X = S02Ph 

X 
X = CH3 or S02Ph 

(a) CIS02NC0, MeCN, 0 °C; then Et3N, r.L; (b) NaH, DMF, 0 °C; then 
Mel or PhS02Cl, r.t; (c) LiTMP, THF. -78 °C; then l2, -78 °C to r.t 

Finally, we synthesized substituted 2-iodobenzonitriles 29 and 30 for a study of the 

electronic effect of substituents on the benzene ring. 2-Iodo-5-nitrobenzonitrile (29) was 

obtained in 65% yield by iodination of the diazonium salt prepared from 5-

nitroanthranilonitrile (eq 10). A three-step synthesis based on variations of the Sandmeyer 

reaction afforded the electron-rich 2-iodo-4-methoxybenzonitrile (30) in 30% overall yield 

(Scheme 5). 

29 

(10) 

Scheme 5 

OCH3 OCh3 OCH3 OCH3 

(a) NaNO?, H2S04,0 °C; then CuCN, NaCN, H 20; (b) SnCI2. AcOH, 
DME, 60 ffC; (c) NaN02, H2S04, 0 °C; then Kl, HgO. r.t 
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Scheme 6 

O 

CN 
cat Pd 

With various o-iodoarenenitriles in hand, we proceeded to explore their annulation onto 

diphenylacetylene and norbomene (Scheme 6). l-Cyano-2-iodonaphthalene (19) readily 

participated in both reactions, affording polycyclic ketones 31 and 32 in excellent yields 

identical to those obtained with 2-iodobenzonitrile (Table 6, entry 1). To our surprise, the 

annulation of 9-cyano- 10-iodophenanthrene (20) onto diphenylacetylene produced not only 

the expected fully conjugated ketone 33, but also its dihydro derivative 34, which apparently 

is formed from 33 so as to relieve the former compound's anti-aromaticity (Table 6, entry 2). 

This phenomenon has been previously observed in an unrelated synthesis of 33.38 The 

reaction of 20 with norbomene proceeded smoothly and led to polycyclic ketone 35 in high 

yield (entry 2). An attempted double annulation of 2,3-dicyano-1,4-diiodobenzene (23) onto 

diphenylacetylene afforded a complex reaction mixture, in which we were unable to identify 

any individual annulation products (entry 3). However, the double annulation succeeded in 

the case of norbomene, and polycyclic dione 36 was obtained as a mixture of several 

diastereomers (entry 3). 

Somewhat surprisingly, no annulation products were observed when o-iodonicotino-

nitriles 24 and 25 were allowed to react with diphenylacetylene (entries 4 and 5). The failure 

may possibly be caused by competing coordination of the pyridines and alkynes with 

palladium. Yet, no problems were encountered in the annulation of 24 onto norbomene, 

which produced the heterocyclic ketone 37 in a good yield (entry 4). We found, however, 

that the reaction between 25 and norbomene did not lead to the expected annulation product, 

but rather to 2-(2-norbornyl)pyridine-3-carbonitrile (38, entry 5). It seems quite likely that 

the nitrogen atom of the pyridine ring chelates to the palladium center in the intermediate 
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Table 6. Annulation of 2-Iodoarenenitriles (Scheme 6)" 

entry nitrile 
from diphenylacetylene from norbomene 

product(s) % yield product(s) % yield 

CN 

19 

CN 

Ph 

Ph 

33 

96 

77 

32 

93 

91 

CN 

TE 
23 1 

6" 
24 

CN a; 
25 

45 

n n 

CDB 
37 

% 
38 

33" 

52 

40 

" See the Experimental Section for the reaction conditions. 6 Isolated yield. r A complex product mixture is 
formed. d Isolated as a mixture of diastereomers. 

corresponding to I in Scheme 1, thus preventing the norbomylpalladium species from adding 

to the cyano group and eventually leading to reduction of the C-Pd bond in this intermediate. 

An obstacle of a different kind was encountered in the attempted annulation of 2-

iodothiophene-3-carbonitrile (26). Instead of incorporating diphenylacetylene into the 

product structure, this reaction afforded the homocoupling product 39 in 85% yield (eq 11). 
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Presumably, the palladium catalyst is ligated by the sulfur atom in 26, making coordination 

to the alkyne less favorable. 

After no annulation was observed in the reaction between several indolecarbonitriles 

(27a, 27c, 28b) and diphenylacetylene, compounds 27 and 28 were subjected to annulation 

onto norbomene (Table 7). The more electron-rich #-methyl-2-iodo-3-indolecarbonitrile 

(28b) and the parent cyanoindole 28a furnished no annulation products (entries 1 and 2). 

Considering the possibility that sluggish oxidative addition of the electron-rich 28a and 28b 

to the palladium catalyst may be responsible for these disappointing results, we annulated 

norbomene with the more electron-poor 28c. This reaction afforded mostly N-

(benzenesulfonyl)indole-3-carbonitrile. However, the annulation product 40 was also 

obtained, albeit only in a modest 16% yield (entry 3). Steric hindrance around the reaction 

site probably accounts for the large amount of the reduced starting material in this reaction. 

To separate sterics from electronic effects, a series of indolecarbonitriles with a different 

substitution pattern was studied. The electron-rich 27b furnished a 77% yield of the 

heterocyclic annulation product 41 (entry 4), whose skeleton is related to that of a key 

intermediate in the synthesis of a natural product yuehchukene and its analogs.39 The 

unprotected indolecarbonitrile 27a afforded 2-cyanoindole in a high yield with no annulation 

product (entry 5). This result is likely caused by the ease of nitrogen deprotonation in 27a, 

which leads to the formation of a negatively charged arylpalladium intermediate and impedes 

its coordination and subsequent addition to norbomene. The annulation of N-

benzenesulfonyl-3-iodoindole-2-carbonitrile (27c) was far more successful, the target 

product 42 being formed in a 69% isolated yield (entry 6). Desulfonylation and subsequent 

reduction of the C-I bond in 27c accounted for 20% of the starting material, which brings the 

corrected yield of 42 to 86%. Interestingly, no desulfonylated annulation products were 

detected in the reactions of either 27c or 28c (entries 3 and 6). 

CN 

26 

Ph 
cat Pd (11) 
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Table 7. Annulation of Norbomene with Indolecarbonitriles" 

entry indolecarbonitrile product(s) % isolated yield 

CN 

O3-
28 

27 

CH3 (28b) 

H(28a) 

S02Ph (28c) 

CH3 (27b) 

H(27a) 

S02Ph (27c) 

CN 

O5 
S02Ph 

S02Ph 

0$ 
41 

CM, 

CO-
H 

42 

O 
S02Ph 

52 

16 

77 

81 

69(86) 

CO-® 
20 

° See the Experimental Section for the reaction conditions. * The yield in parentheses is corrected for the 
diverted starting material. 
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The steric hindrance around the reaction site appears to have a pronounced effect on the 

annulation of indolecarbonitriles (compare entries 3 and 6, and 1 and 4), although other 

factors cannot be excluded. However, the success of the annulation of both the electron-rich 

27b and the electron-poor 27c suggests that the electronic density of the indole ring does not 

play a significant role in this reaction. 

In contrast, the electronic effects of the substituents in the benzene ring appear to have a 

major influence on the alkyne annulation with substituted 2-iodobenzonitriles (Table 8). 

Thus, electron-deficient benzonitrile derivatives 29 and 22 when annulated onto 

diphenylacetylene afford only moderate yields of indenones 43 and 44 (entries 1 and 2) 

Table 8. Annulation of Substituted 2-Iodobenzonitriles (Scheme 6)° 

from diphenylacetylene from norbomene 

product % yield product % yield 

1 "TCC 
29 

"txf-
43 Ph 

53 

47 

81 

2 jcc 

22 Ph 
44 

47 

48 

85b 

3 a: Cn p̂h 
Ph 

96 

H 

93 

4 çC„ 
OCH3 

21 
ÇC -̂ph 

OCH3
Ph 45 

58 çdb 
OCH3 4g 

75 

5 «jar 

30 Ph 
46 

81* «jcdb 
50 

846c 

" See the Experimental Section for the reaction conditions. 6 The reaction time was 48 h. c A byproduct, 4-
methoxybenzonitrile. was isolated in 16% yield. 
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compared to the reaction with the parent system (entry 3). The electron-rich 2-iodo-3-

methoxybenzonitrile (21) also produced indenone 45 in a modest yield (entry 4). On the 

other hand, the annulation of diphenylacetylene by the less sterically hindered 30 resulted in 

the formation of indenone 46 in a much higher yield (entry 5). 

Both electron-deficient and electron-rich benzonitriles gave equally good results when 

used in the annulation of norbomene (Table 8). The yields of the polycyclic ketones 47-50 

were as good as, or better than, the yields of the corresponding indenones. Electron-

withdrawing substituents did not have nearly as big an effect on the annulation of norbomene 

with 29 and 22 (entries 1 and 2), although the yields of 47 and 48 were still lower than those 

obtained with 2-iodobenzonitrile itself (entry 3). Annulation of the relatively hindered 21 

onto norbomene gave a higher yield compared to the corresponding reaction with 

diphenylacetylene (entry 4), most probably due to the reduced steric demands of the double 

bond in the bicyclic system. A reduction product, 4-methoxybenzonitrile, was formed in 

16% yield from 30, diverting some starting material from the annulation and lowering the 

otherwise excellent yield of 50 (entry 5). 

We propose the following model to account for the electronic effects of the substituent on 

the aromatic ring on the annulation onto alkynes and alkenes (Fig I). In order for the 

organopalladium intermediate III to successfully add to the cyano group, there has to be a 

sufficient partial negative charge (S-) on the carbon atom of the Pd-C bond, as well as 

reasonable electron density in the carbon-nitrogen triple bond in order for the nitrile to 

effectively coordinate to palladium. When the annulation involves an alkyne, intermediate 

Ilia is formed, in which an electron-withdrawing substituent Z directly reduces, via 

conjugation, both the electron density of the cyano group and the partial negative charge 

Figure 1. Electronic effects of substituent Z on annulations involving 2-iodobenzonitriles. 

Ha Hb 
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on the carbon bearing the palladium moiety, thus inhibiting vinylpalladium attack on the CN 

and lowering the yield of the annulation.40 In the case of norbomene, Z has no direct effect 

on the partial negative charge S- (intermediate Mb) and only affects the coordinating ability 

of the cyano group. It is also possible that the nitrile carbopalladation in Illb is promoted by 

the steric interactions between the Pd and the bridging methylene unit of the norbomyl 

system as it relieves the steric congestion. As a result, norbomene annulation by electron-

poor substrates furnishes higher yields than the corresponding diphenylacetylene reactions. 

An electron-donating Z group should not interfere with the annulation, except perhaps by 

slowing down the initial oxidative addition, as observed in the case of 30 (entry 5, Table 8). 

Conclusions 

The carbon-nitrogen triple bond of aryl and heteroaryl ni tri les has been observed to 

readily participate in organopalladium annulation reactions. An efficient procedure for the 

synthesis of 2,3-diarylindenones and polycyclic aromatic ketones from readily prepared o-

iodoarenenitriles has been developed. The reaction is compatible with a variety of functional 

groups and affords products in good to excellent yields. We have also gained some insights 

into the mechanism of nitrile carbopalladation through variation of the base and a study of 

electronic and steric effects in substituted 2-iodobenzonitriles and indolecarbonitriles. This 

chemistry illustrates that there may be other organopalladium reactions which will occur 

intramolecularly that normally do not occur by intermolecular processes. 

Experimental Section 

General. *H and 13C NMR spectra were recorded at 300 and 75 MHz or 400 and 100 

MHz, respectively. Thin-layer chromatography was performed using commercially prepared 

60-mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm) and basic KMn04 solution [3 g of KMn04 + 20 g of K1CO3 + 

5 mL of NaOH (5%) + 300 mL of HiO]. All melting points are uncorrected. High resolution 

mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector mass 
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spectrometer using EI at 70 eV. IR spectra were measured on a Bomem Michelson MB-102 

FT-IR spectrometer. All reagents were used directly as obtained commercially unless 

otherwise noted. Pd(OAc)2 was donated by Johnson Matthey, Inc. and Kawaken Fine 

Chemicals Co., Ltd. PPhs was also donated by Kawaken Fine Chemicals Co., Ltd. Pd(dba)2 

was prepared according to a published procedure.41 2-Iodobenzonitrile was obtained from 

Trans World Chemicals, Inc. Diphenylacetylene, acenaphthylene, norbomene, 

tetramethylpiperidine, 5-nitroanthranilonitrile, indole-2-carboxylic acid, ethyl indole-2-

carboxylate, indole-3-carbonitrile, 4-methoxy-2-nitroaniline, triethylamine, 4-octyne, 2,2,7,7-

tetramethyl-3,5-octadiyne, 1-cyanonaphthalene, 9-cyanophenanthrene, 3-

methoxy benzoni tri le, 1,2-dicyanobenzene, 1,4-dicyanobenzene, and 3-cyanopyridine were 

obtained from Aldrich Chemical Co., Inc. Bicyclo[2.2.2]octene was obtained from Wiley 

Organics. Tetra-n-butylammonium chloride, 2-iodophenylacetonitrile, 4,4-dimethyl-2-

pentyne, and thiophene-3-carbonitrile were obtained from Lancaster Synthesis, Inc. 1-

Phenyl-1-propyne and 2-methyl-4-phenyl-3-butyn-2-ol were obtained from Farchan 

Laboratories, Inc. 

Starting materials. Dimethyl rô,encfo-5-norbornene-2,3-dicarboxylate,42 

benzonorbomadiene,34 and 2-iodoindole43 were prepared according to published procedures. 

General Procedure for the Preparation of 2-Iodoarenecarbonitriles via Nitrile-

Directed o-Lithiation - Iodination. To a solution of 2,2,6,6-tetramethylpiperidine (0.85 g, 

6.0 mmol) in 25 mL of anhydrous THF at 0 °C under Ar was added 4 mL of 1.5 M solution 

of MeLi (6 mmol) in hexane. The resulting solution was stirred at 0 °C for 30 min, cooled to 

-78 °C, and 6 mmol of an aromatic nitrile (as a solution in THF, if solid) was added slowly. 

The dark solution was stirred for 35-60 min at -78 °C, after which a solution of I2 (1.68 g, 6.6 

mmol) in 2.5 mL of THF was added. After stirring for 2 h at —78 °C, the mixture was 

allowed to warm up to room temperature and stirred for 1 h. Then, 20 mL of ice-water was 

added, the mixture was extracted with ether, the ethereal extracts were combined, and 

washed with dilute HC1, water, aq Na2S20], and brine. After drying over MgS04, the ether 

was removed, and the product was purified by column chromatography or recrystallization. 
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The following compounds, prepared by the above procedure, have been previously 

reported: l-cyano-2-iodonaphthelene (19),37 9-cyano-10-iodophenanthrene (20),44 1,4-

dicyano-2-iodobenzene (22),45 and 2-iodothiophene-3-carbonitrile (26).46 

2-Iodo-3-methoxybenzonitrile (21). Obtained in a 50% yield from 3-

methoxybenzonitrile under the indicated conditions after «crystallization from hexanes: 

white solid, mp 121-122 °C (hexanes); 'H NMR (CDC13) S 3.93 (s, 3H), 7.00 (dd, J = 8.4,0.8 

Hz, 1H), 7.23 (dd, J = 7.6, 1.2 Hz, 1H), 7.42 (t, J = 8.0 Hz, IH); l3C NMR (CDC13) 8 56.8, 

91.1, 114.4, 119.4, 122.1, 126.3, 129.9, 159.1; IR (neat) 2228, 2840, 3082 cm '; HRMS m/z 

258.94988 (calcd for CgHoINO, 258.94942). 

2,3-Dicyano-l,4-diiodobenzene (23). Obtained in a 74% yield from two consecutive 

lithiations of 1,2-dicyanobenzene under the indicated conditions after recrystallization from 

acetone: light yellow solid, mp (dec.) 230-232 °C (acetone); lH NMR (CDC13) S 7.80 (s, 

2H); l3C NMR (CDC13) S 98.6, 115.8,125.5, 143.5; IR (neat) 2225 cm1; HRMS m/z 

379.83123 (calcd forC8H2l2N2, 379.83075). 

3-Cyano-4-iodopyridine (24) and 3-cyano-2-iodopyridine (25). Obtained in a 50% 

combined yield from the reaction of 3-cyanopyridine under the indicated conditions. The 

mixture of 24 and 25 was partially separated by column chromatography using 1:2 

hexanes/EtOAc. Nitrile 24: light yellow solid, mp (dec.) 114-119 °C (hexanes/EtOAc); *H 

NMR (CDC13) Ô 7.91 (d, 7=5.6 Hz, 1H), 8.39 (d, 7=5.2 Hz, 1H), 8.73 (s, 1H); I3C NMR 

(CDC13) S 109.6, 115.3, 134.0, 141.1, 152.1, 153.1; IR (neat) 2231 cm"1; HRMS m/z 

229.93441 (calcd for CÔH3IN2, 229.93410). Nitrile 25: beige solid, mp (dec.) 120-122 °C 

(hexanes/EtOAc); 'H NMR (CDCL3) 5 7.43 (m, 1H), 7.82 (m, 1H), 8.54 (dd, / = 4.8,2.0 Hz, 

1H); L3C NMR (CDCL3) 8 117.7, 119.9,121.0, 122.5, 141.2, 152.9; IR (neat) 2228 cm1; 

HRMS m/z 229.93441 (calcd forC^H3IN2,229.93410). 

3-Iodoindole-2-carbonitrile (27a). From indole-2-carboxylic acid: the acid was 

converted to indole-2-carbonitrile by a published procedure.47 To a cooled solution of 

indole-2-carboxylic acid (2.0 g, 12.4 mmol) in 60 mL of anhydrous Et20 was added 1.9 mL 

of SOCl2 (26 mmol). After stirring for 40 min at room temperature, the ether was removed 

under reduced pressure at a temperature not exceeding 35 °C. The obtained acyl chloride 

was dissolved in 40 mL of anhydrous Et20 and the resulting solution was added immediately 
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to a stirred solution of liquid ammonia in 80 ml of Et%0. The reaction mixture was stirred at 

room temperature for 24 h. The solvent was then evaporated under reduced pressure, and the 

white indole-2-carboxamide was crystallized from 50% aq EtOH and dried in air, after which 

it was dissolved in POCI3 and heated under reflux for 5 min. The cooled solution was poured 

onto crushed ice and aq NH4OH was added to maintain a basic pH. The aqueous mixture 

was extracted with EtzO, the extracts were dried over NazSO^ and evaporated. The brown 

indole-2-carbonitrile (68% overall yield from indole-2-carboxylic acid) was recrystallized 

from 33% aq EtOH, dried, and iodinated according to the procedure of Chashi et al.** A cold 

solution of I2 (0.72 g, 2.8 mmol) in 6 mL of DMF was added to a solution of indole-2-

carbonitrile (0.4 g, 2.8 mmol) and powdered KOH (0.56 g, 10 mmol) in 6 mL of DMF. After 

stirring at room temperature for 4 h, the reaction mixture was poured into 600 mL of water 

containing 40 mL of 30% aq NH4OH. The precipitate was collected by filtration and dried to 

afford 0.56 g (75%) of 27a, whose spectral properties matched those previously reported.49 

3-Iodoindole-2-carbonitrile (27a). From ethyl indole-2-carboxylate: the ester (1.5 g, 

7.93 mmol) was quantitatively reduced with LiAlRi (0.553 g, 14.55 mmol) in ether at room 

temperature, and the resulting 2-(hydroxymethyl)indole was oxidized to indole-2-

carbaldehyde with MnOi.50 The aldehyde was converted into indole-2-carbonitrile as 

follows:51 a solution of the crude indole-2-carbaldehyde (0.9 g, 6.2 mmol) and HjNNMej 

(1.116 g, 18.6 mmol) in 35 mL of dry benzene was refluxed with a Dean-Stark separator for 

4 h, concentrated to half the volume with the trap open, cooled to room temperature, and Mel 

(1.16 mL, 18.6 mmol) was added. The reaction mixture was refluxed for 2 h, cooled, diluted 

with EtzO and filtered to collect the white precipitate, which was dried in a dessicator and 

added to a freshly prepared solution of NaOMe (made from 6.52 mmol of Na and 20 mL of 

MeOH). The resulting mixture was refluxed for 4 h, after which MeOH was evaporated to 

afford crude indole-2-carbonitrile (66% yield), which was converted into 27a as described 

above 48 

N-Methyl-3-iodoindoIe-2-carbonitrile (27b). A solution of 27a (1.03 g, 3.83 mmol) in 

1 mL of DMF was slowly added to a suspension of NaH (0.184 g, 7.66 mmol) in 2 mL of 

DMF at 0 °C under Ar. After stirring for 30 min at room temperature, Mel (0.36 mL, 5.75 

mmol) was added over a few minutes. The mixture was then stirred for 1 h at room 



www.manaraa.com

27 

temperature, cooled in ice, diluted with aq NHtOH and extracted with EtiO. The ethereal 

extracts were combined, dried over NaiSO.», evaporated and chromatographed (2:1 hexanes-

EtOAc) to afford 27b in 84% yield: light yellow solid, mp 106-107 °C (hexanes-EtOAc); lH 

NMR (CDCb) 5 3.88 (s, 3H), 7.23-7-29 (m, 2H), 7.41-7.45 (m, 2H); l3C NMR (CDCI3) ô 

32.4,69.1, 110.3, 113.1,122.1, 122.7, 126.7, 129.2, 137.6 (1 sp2 carbon missing due to 

overlap); IR (neat) 2219, 2926,3065 cm"1; HRMS m/z 281.96592 (calcd for Q0H7IN2, 

281.96540). 

N-Benzenesulfonyl-3-iodoindole-2-carbonilrile (27c). Obtained in 96% yield 

following the procedure for 27b using PhSOiCl instead of Mel after extraction with EtOAc 

and column chromatography with 2:1 hexanes-EtOAc: off-white solid, mp 210-211 °C 

(hexanes-EtOAc); *H NMR (CDC13) 8 7.42-7.44 (m, 2H), 7.50-7.54 (m, 2H), 7.58-7.64 (m. 

2H), 8.03-8.05 (m, 2H), 8.20 (d, J = 8.4 Hz, 1H); l3C NMR (CDCI3) 8 85.6,112.2, 114.5, 

123.6, 125.4, 127.2, 129.7,129.8, 130.7, 135.0, 135.9, 137.0(1 sp2 carbon missing due to 

overlap); IR (neat) 1184, 1379, 2231, 3086 cm"1; HRMS m/z 407.94341 (calcd for 

Q5H9IN2O2S, 407.94295). 

2-Iodoindole-3-carbonitrile (28a) was obtained according to a modified procedure of 

Vorbriiggen.52 To a solution of 2-iodoindole (0.24 g, I mmol) in 2 mL of MeCN, kept in an 

ice-water bath, was slowly added 0.09 mL (1.05 mmol) of CISO2NCO. The reaction mixture 

was stirred for 2 h at 0 °C, after which EtsN (0.146 mL, 1.05 mmol) was added dropwise. 

After stirring for another 2 h at room temperature, the mixture was poured into ice water and 

extracted with Et20. The extracts were dried with NazSO^ and chromatographed using 1:1 

hexanes-EtOAc to afford 28a in 40% yield: white solid, mp 185-186 °C (hexanes-EtOAc); 

lH NMR (CDCI3) 8 7.24-7.29 (m, 2H), 7.41-7.43 (m, 1H), 7.68-7.70 (m, 1H), 8.82 (br s, 

1H); l3C NMR (DMSO-</6) 8 92.5,94.0, 112.0, 116.5,117.5, 121.9, 123.5,128.2,138.0; IR 

(neat) 2217, 3246 cm"1; HRMS m/z 267.95012 (calcd for C9H5IN2, 267.94975). 

AT-Methyl-2-iodoindole-3-carbonitrHe (28b). Indole-3-carbonitrile was methylated 

according to the procedure for 27b, and the iV-methyl derivative was converted into crude 

28b by nitrile-directed o-lithiation-iodination as described above. Recrystallization from 2:1 

hexanes-EtOAc afforded 28b in 91% yield: beige solid, mp 148-149 °C (hexanes-EtOAc); 

!H NMR (CDCb) 8 3.76 (s, 3H), 7.18-7.25 (m, 2H), 7.31 (d, 7 = 7.6 Hz, 1H), 7.59 (d, 7 = 7.2 
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Hz, 1H); 13C NMR (CDC13) 5 35.1,94.9,95.8,110.6, 116.2, 118.5, 122.2, 123.8,128.6, 

137.3; IR (neat) 2213, 2932, 3058 cm'1; HRMS m/z 281.96601 (calcd for CI0H7IN2, 

281.96540). Alternatively, 28b was obtained from 28a by methylation according to the 

procedure for 27b. 

AT-Benzenesulfonyl-2-iodoindole-3-carbonitrile (28c) was obtained from 28a by 

sulfonylation according to the procedure for 27c and recrystallized from 2:1 hexanes-EtOAc, 

95% yield: white solid, mp 191-192 °C (hexanes-EtOAc); lH NMR (CDCI3) 8 7.35-7.43 (m, 

2H), 7.50-7.55 (m, 2H), 7.60-7.68 (m, 2H), 7.97-8.00 (m, 2H), 8.32-8.35 (m, 1H); l3C NMR 

(CDCb) 5 87.0, 114.5, 115.5, 119.1, 125.1, 126.6, 127.4, 129.3, 129.6, 130.1, 135.0, 137.6(1 

sp2 carbon missing due to overlap); IR (neat) 1194, 1378, 2228 cm'1; HRMS m/z 407.94341 

(calcd for C15H9IN2O2S, 407.94295). Nitrile-directed o-lithiation-iodination of N-

benzenesulfonyl indole-3-carbonitrile led to a hard-to-separate mixture of 28c, unreacted 

starting material, and 2-iodoindole-3-carbonitrile. 

2-Iodo-5-nitrobenzonilrile (29) was prepared by the procedure of Clive et al.53 A 

solution of NaNOi (0.56 g, 8.1 mmol) in 2.5 ml of water was added, with stirring, to a cold 

(0 °C) solution of 5-nitroanthranilonitrile (1.2 g, 7.35 mmol) in 10 ml of concentrated HC1 

and 15 g of ice. The mixture was stirred at 0 °C for 30 min and the cold solution, maintained 

at 0 °C, was added dropwise over 20-30 min to a stirred solution (room temperature) of KI 

(12.2 g, 73 mmol) in 15 ml of water. The resulting mixture was stirred at room temperature 

overnight and extracted with CH2CI1. The extracts were washed with 10% aq NaOH 

solution, 5% aq NaHCOs, and water, and dried over MgSQ». 2-Iodo-5-nitrobenzonitrile (29) 

was obtained in 65% yield upon column chromatography with 1:1 hexanes-CH2Cl2: 

yellowish solid, mp 116-117 °C (EtOH); lH NMR (CDC13) 5 8.11 (dd, 7=8.4, 2.4 Hz, IH), 

8.19 (d, J = 8.4 Hz, 1H), 8.44 (d, J = 2.4 Hz, 1H); I3C NMR (CDC13) S 106.9,117.4, 122.2, 

127.6, 128.6, 128.9, 141.0; IR (neat) 1360, 1502, 2233 cm1; HRMS m/z 273.92429 (calcd for 

C7H3IN2O2, 273.92393). 

2-Iodo-4-methoxybenzonitrile (30). 2-Nitroanisidine was converted into 4-methoxy-2-

nitrobenzonitrile by the procedure of Rapaport.54 2-Nitroanisidine (1.68 g, 10 mmol) was 

diazotized at 0 °C as described in the procedure for 29 The solution of the resulting 

diazonium salt was neutralized by addition of solid Na2C03 and added slowly, with stirring, 
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to a suspension of CuCN (0.94 g, 10.5 mmol) and NaCN (1.03 g, 21 mmol) in 6 mL of H?0 

at 0 °C. The reaction mixture was stirred for 1 h at room temperature, the precipitate was 

dissolved in CHiCli, the aqueous layer was discarded, and the organic layer was washed with 

water, dried over NaiSO* and evaporated to afford 4-methoxy-2-nitrobenzonitrile (73% 

yield), which was used without further purification. 4-Methoxy-2-nitrobenzonitrile (0.7 

mmol) was dissolved in 3 mL of a 5:4:1 DME-EtOH-AcOH mixture, a solution of SnCh (5.5 

mmol) in the same solvent mixture was added dropwise with stirring, the reaction mixture 

was stirred at room temperature for 5 min, then at 65 °C for 3 h, and worked up to afford a 

quantitative yield of 2-amino-4-methoxybenzonitrile. Using the procedure for 29,2-amino-

4-methoxybenzonitrile was converted into 30, which was obtained in 61% yield after column 

chromatography with 1:1 hexanes-CHiCh: yellow solid, mp 76-78 °C (EtOH); 'H NMR 

(CDC13) 5 3.86 (s, 3H), 6.95 (dd, J = 8.4, 2.4 Hz, 1H), 7.40 (d, J = 2.4 Hz, 1H), 7.50 (d, J -

8.4 Hz, 1H); l3C NMR (CDC13) ô 55.8,99.2, 112.1, 114.4, 119.6, 124.9, 135.1, 162.4; IR 

(neat) 2218, 2841, 3090 cm'1; HRMS m/z 258.94988 (calcd forCgHJNO, 258.94942). 

General Procedure for the Palladium-Catalyzed Annulation of Alkynes and Bicyclic 

Alkenes with 2-Iodoarenenitriles. Palladium bis(dibenzylideneacetone) ( 14.4 mg, 0.025 

mmol), Et3N (25.3 mg, 0.25 mmol), the 2-iodoarenenitrile (0.25 mmol), the alkyne or 

bicyclic alkene (0.75 mmol), and 5 mL of a 9:1 DMF-water mixture were placed in a 4 dram 

vial, which was heated in an oil bath at 130 °C for the appropriate period of time. The 

reaction mixture was cooled, diluted with ether, washed with saturated aq NH4CI, dried over 

anhydrous Na,SO^, and filtered. The solvent was evaporated under reduced pressure and the 

product was isolated by chromatography on a silica gel column. 

The following compounds, prepared by the above procedure, have been previously 

reported by us: indenones 1, 3-7 and 9, polycyclic aromatic ketones 11 and 12, and 

naphthenone 16.19-20 Also, 2,3-diphenyl-l//-benz[g]inden-l-one (31),55 l-oxo-2,3-diphenyl-

l//-cyclopenta[/]phenanthrene (33),38 l-oxo-2,3-dihydro-2,3-diphenyl-l//-cyclopenta[/]-

phenanthrene (34),38,56 3,3'-dicyano-2,2'-bithiophene (39),57 4-methoxy-2,3-diphenyl-l-

indenone (45),58 and 5-methoxy-2,3-diphenyl-l-indenone (46)58 have been described 

elsewhere. 
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3-Phenyl-2-(2-propenyl)-l-lndenone (8). Obtained in a 6% yield from the reaction of 

2-methyl-4-phenyl-3-butyn-2-ol and 2-iodobenzonitrile according to the general procedure at 

100 °C after purification by column chromatography using 20:1 hexanes/EtOAc: orange 

solid, mp 104-106 °C (hexanes-EtOAc); lH NMR (CDC13) 8 1.71 (s, 3H), 5.23-5.24 (m, IH), 

5.26-5.28 (m, 1H), 7.05 (d, 7=7.2 Hz, 1H), 7.24-7.26 (m, 1H), 7.30-7.33 (m, 1H), 7.45-7.53 

(m, 6H); 13C NMR (CDC13) Ô 22.5, 120.1, 121.1, 122.8, 128.0, 128.5, 128.6, 128.7, 129.2, 

130.8, 133.2, 133.3, 134.9, 145.3, 154.5, 196.2; IR (neat) 1703,2970, 3033 cm'1; HRMS m/z 

246.10475 (calcd forCl8HuO, 246.10447). 

l-(2-Cyanophenyi)acenaphthylene (10). Obtained in a 57% yield from the reaction of 

acenaphthylene and 2-iodobenzonitrile according to the general procedure at 100 °C after 

purification by column chromatography using 20:1 hexanes/EtOAc: bright yellow solid, mp 

168-170 °C (benzene); 'H NMR (CDCb) 8 7.42-7.48 (m, 1H), 7.50 (s, IH), 7.57-7.64 (m, 

2H), 7.65-7.71 (m, IH), 7.72-7.84 (m, 4H), 7.86-7.90 (m, 2H); l3C NMR (CDC13) 8 111.5, 

119.0, 124.3, 125.5, 127.6, 127.7, 128.0, 128.1,128.3, 128.6, 128.8, 129.9, 130.4, 132.7, 

134.3, 138.3, 138.5, 138.9, 139.5; IR (neat) 2223, 3043, 3062 cm '; HRMS m/z 253.08946 

(calcd forCi9HuN, 253.08915). 

Dimethyl 1,2,3,4,4a,9a-hexahydro-l,4-methano-9-oxofluorene-ci.s,endo-2,3-

dicarboxylate (13). Obtained in an 89% yield from the reaction of dimethyl cis.endo-5-

norbomene-2,3-dicarboxylate and 2-iodobenzonitrile according to the general procedure after 

purification by column chromatography using 2:1 hexanes/EtOAc: off-white solid, mp 142-

144 °C (hexanes-EtOAc); 'H NMR (CDCb) 8 0.96-1.04 (m, 2H), 2.63-2.65 (m, IH), 2.87-

2.92 (m, 2H), 3.00-3.06 (m, IH), 3.13-3.19 (m, IH), 3.64 (s, 6H), 3.94 (d, 7 = 6.0 Hz, IH), 

7.27-7.32 (m, IH), 7.49-7.56 (m, 2H), 7.63-7.66 (m, IH); I3C NMR (CDCb) 8 33.5,41.6, 

43.8,44.4,46.0,46.7, 50.5, 51.6, 51.9, 123.3,126.3, 127.5, 135.2, 139.2, 142.6, 156.7,172.2, 

207.3; IR (neat) 1702, 1728,1743, 2923, 2985,3078 cm '; HRMS m/z 314.11597 (calcd for 

CisHuOs, 314.11542). 

4b,5,10,10a-Tetrahydro-5,10-methanobenz[&]fluoren-ll-one (14). Obtained in a 59% 

yield from the reaction of benzonorbomadiene and 2-iodobenzonitrile according to the 

general procedure after purification by column chromatography using 4:1 hexanes/EtOAc: 

white solid, mp 86-87 °C (hexanes); H NMR (CDCb) 8 1.31-1.36 (m, IH), 1.63-1.67 (m, 
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IH). 2.70-2.73 (m. IH), 3.37 (d, 7 = 5.7 Hz, IH), 3.43 (s, IH), 3.66 (s, IH), 7.12-7.15 (m, 

2H), 7.26-7.35 (m, 2H), 7.41-7.44 (m, 1H), 7.63-7.68 (m, 2H), 7.77 (d, 7 = 7.8 Hz, 1H); l3C 

NMR (CDC13) 5 42.8,46.8,48.2,48.3, 55.5, 121.3, 121.4, 123.7, 126.1, 126.2, 127.9, 135.2, 

140.7, 147.3, 148.0, 156.0, 206.7 (1 sp2 carbon missing due to overlap); IR (neat) 1703, 

2966, 3026 cm"1; HRMS m/z 246.10475 (calcd for C,gH,40, 246.10447). 

2,3-Di(4-methoxyphenyl)-l-indenone (15). Obtained in a 79% yield from the reaction 

of bis(4-methoxyphenyl)acetylene and 2-iodobenzonitrile according to the general procedure 

after purification by column chromatography using 4:1 hexanes/EtOAc: dark red solid, mp 

118-119 °C (hexanes-EtOAc); *H NMR (CDC13) 8 3.79 (s, 3H), 3.85 (s, 3H), 6.82 (dd, 7 = 

7.2, 2.0 Hz, 2H), 6.94 (dd, 7 = 7.2, 2.0 Hz, 2H), 7.16 (d. 7 = 7.2 Hz, IH), 7.22-7.27 (m, 3H), 

7.33-7.37 (m, 3H), 7.55 (dd, 7 = 6.8,0.4 Hz, IH); 13C NMR (CDC13) 8 55.2, 55.3, 113.6, 

114.1, 120.9, 122.6, 123.4, 125.0, 128.6, 130.1, 130.9, 131.1, 131.2, 133.2, 145.4, 153.7, 

159.0, 160.2, 196.9; IR (neat) 1705, 2834, 2957, 3066 cm1; HRMS m/z 342.12611 (calcd for 

C23H1803, 342.12559). 

1,1,3-Trimethy l-4-pheny I- l,2-dihydronaphthalen-2-one (17). Obtained (along with 

18) in an 18% yield from the reaction of 1 -phenyl-1-propyne and 2-(2-iodophenyl)-2-

methylpropanenitrile according to the general procedure after purification by column 

chromatography using 20:1 hexanes/EtOAc: pink solid, mp 61-62 °C (hexanes-EtOAc); *H 

NMR (CDCI3) 8 1.56 (s, 6H), 1.76 (s, 3H), 6.83 (dd, 7 = 8.0,0.8 Hz, IH), 7.10 (td, 7 = 8.0, 

0.8 Hz, IH), 7.19-7.20 (m, 2H), 7.32 (td, 7 = 8.0,0.8 Hz, IH), 7.41-7.45 (m, IH), 7.47-7.52 

(m, 3H); 13C NMR (CDC13) 5 13.9, 28.3,46.8, 125.8,126.2, 127.7, 128.2, 128.5,128.6, 

128.7, 129.2, 130.8, 137.9, 146.5, 150.9, 204.3; IR (neat) 1657, 2971, 3064 cm1; HRMS m/z 

262.13625 (calcd forCI9Hl80, 262.13577). 

l,l»4-Trimelhyl-3-phenyl-l,2-dihydronaphlhalen-2-one (18). Obtained (along with 

17) in an 11% yield from the reaction of 1 -phenyl-1 -propyne and 2-(2-iodophenyl)-2-

methyIpropanenitrile according to the general procedure after purification by column 

chromatography using 20:1 hexanes/EtOAc: pink solid, mp 67-68 °C (hexanes-EtOAc); H 

NMR (CDC13) 8 1.55 (s, 6H), 2.24 (s, 3H), 7.15 (dd, 7 = 8.4, 1.6 Hz, 2H), 7.32-7.37 (m, 2H), 

7.39-7.45 (m, 3H), 7.51 (dd, 7 = 7.6,0.8 Hz, IH), 7.65 (d, 7= 8.0 Hz, IH); 13C NMR 

(CDCI3) 8 18.2, 27.9,47.2, 125.8, 126.0, 126.6, 127.2, 128.0, 129.4, 130.0, 130.7, 134.9, 
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136.5, 146.6,202.5 (1 sp2 carbon missing due to overlap); IR (neat) 1652, 2924, 2970,3054 

cm*1; HRMS m/z 262.13625 (calcd forCi9H180,262.13577). 

6b,7,8,9,10,10a-Hexahydro-7,10-methano-ll//-benz[a]fluoren-ll-one (32). Obtained 

in a 93% yield from the reaction of norbomene and l-cyano-2-iodonaphthalene (19) 

according to the general procedure after purification by column chromatography using 10:1 

hexanes/EtOAc: white solid, mp 79-81 °C (ether); *H NMR (CDCI3) 8 0.83-0.96 (m, 2H), 

1.38-1.55 (m, 2H), 1.61-1.80 (m, 2H), 2.46 (d, 7 = 3.6 Hz, 1H), 2.59 (d, 7 = 5.7 Hz, 1H), 2.65 

(d, 7=3.6 Hz, 1H), 3.19 (d, 7= 6.0 Hz, 1H), 7.52-7.58 (m, 2H), 7.63-7.69 (m, 1H), 7.88 (dd, 

7 = 8.1,0.6 Hz, 1H), 8.05 (d, 7 = 8.4 Hz, IH), 9.18 (dd, 7 = 8.4,0.6 Hz, 1H); l3C NMR 

(CDCI3) 8 28.6, 29.1,31.8,40.2,40.5,48.0, 56.3, 123.4, 124.1, 126.6, 128.0, 128.9, 129.0, 

132.6, 133.1, 136.0, 160.0, 209.2; IR (neat) 1691, 2954, 3056 cm'1; HRMS m/z 248.120143 

(calcd for CigHieO, 248.120115). 

13-Oxo-l,2,3*4,4a,13a-hexahydro-l,4-methano-lJ/-indeno[2,l-']phenanthrene (35). 

Obtained in a 91% yield from the reaction of norbomene and 9-cyano- lO-iodophenanthrene 

(20) according to the general procedure after purification by column chromatography using 

10:1 hexanes/EtOAc: white solid, mp 195-196 °C (ether); *H NMR (CDCI3) 8 0.90-1.02 (m, 

2H), 1.48-1.85 (m, 4H), 2.67-2.69 (m, 3H), 3.51 (d, 7= 5.7 Hz, IH), 7.66-7.73 (m, 3H), 7.78-

7.84 (m, IH), 8.24 (dd, 7 = 7.8,0.9 Hz, IH), 8.62-8.73 (m, 2H), 9.33-9.36 (m, IH); l3C NMR 

(CDC13) 8 28.6, 29.5,32.3, 39.5,40.4,46.4, 56.3, 122.5, 123.6, 124.9, 126.0, 127.0,127.1, 

127.2, 128.1, 128.6, 129.8, 130.1, 132.1, 133.8, 159.9,209.2; IR (neat) 1687, 2954, 3087 cm" 

'; HRMS m/z 298.136302 (calcd forC,,H^O, 298.135765). 

l,2,3»4,4a,6b,7,8,9,10,10a,12a-Dodecahydro-{l,4},{7,10}-dimethano-ll//,12i/-

indeno[2,l-a]fluoren-ll,12-dione (36). Obtained in a 33% yield from the reaction of 

norbomene and 2,3-dicyano-1,4-diiodobenzene (23) according to the general procedure (the 

amount of all reagents except 23 was doubled) after purification by column chromatography 

using 1:1 hexanes/EtOAc: off-white solid, mp (dec.) 278-280 °C (hexanes-EtOAc); *H NMR 

(CDCI3) 8 0.79-0.83 (m, 2H), 0.92-0.96 (m, 2H), 1.34-1.50 (m, 4H), 1.59-1.76 (m, 4H), 2.39 

(d, 7 = 3.0 Hz, 2H), 2.53 (d, 7 = 4.5 Hz, 2H), 2.65 (d, 7 = 2.4 Hz, 2H), 3.17 (d, 7 = 4.5 Hz, 

2H), 7.72 (s, 2H); I3C NMR (CDC13) 8 28.5,28.9,31.9,40.8,41.3,48.1,55.8, 132.2,136.2, 



www.manaraa.com

33 

158.6, 205.8; IR (neat) 1716, 2870, 2949 cm1; HRMS m/z 318.162625 (calcd forC^H^Oj, 

318.161980). 

7-Aza-l,2,3»4,4a,9a-hexahydro-l,4-methanofluoren-9-one (37). Obtained in a 52% 

yield from the reaction of 4-iodopyridine-3-carbonitrile (24) and norbomene under the 

indicated conditions after purification by column chromatography using 1:2 hexanes/EtOAc: 

light yellow solid, mp 53-54 °C (hexanes/EtOAc); *H NMR (CDCI3) S 0.75-0.82 (m, IH), 

0.98-1.05 (m, IH), 1.33-1.54 (m, 2H), 1.62-1.84 (m, 2H), 2.46 (d, 7 = 3.9 Hz, IH), 2.54 (d, 7 

= 6.3 Hz, IH), 2.65 (d, 7 = 3.6 Hz, IH), 3.19 (d, 7 = 6.3 Hz, IH), 7.48 (dt, 7 = 5.1,0.9 Hz, 

IH), 8.74 (d, 7 = 5.1 Hz, 1H), 8.87 (d, 7 = 0.9 Hz, 1H); 13C NMR (CDC13) ô 28.7, 29.1,32.7, 

40.8,41.3,48.2, 55.9, 121.7, 134.8, 146.3, 154.3, 164.9, 207.8; IR (neat) 1714,2954 cm1; 

HRMS m/z 199.09995 (calcd forCl3Hi3NO, 199.099714). 

e.ro-2-(2-Norbornyl)pyridine-3-carbonitrile (38). Obtained in a 40% yield from the 

reaction of norbomene and 3-cyano-2-iodopyridine (25) according to the general procedure 

after purification by column chromatography using 4:1 hexanes/EtOAc: yellow oil; lH NMR 

(CDCI3) 5 1.14-1.20 (m. IH), 1.30-1.36 (m, IH), 1.47-1.75 (m, 4H), 2.13-2.21 (m, IH), 2.41-

2.45 (m, 2H), 3.25-3.30 (m, IH), 7.17-7.22 (m, IH), 7.88 (dd, 7= 7.8, 1.8 Hz, IH), 8.70 (dd, 

7 = 4.8, 1.8 Hz, IH); l3C NMR (CDCl3) 5 28.9, 30.2, 35.7,36.7,43.7, 47.7, 108.9, 117.1, 

120.4, 140.2, 151.7, 168.5 (1 sp3 carbon missing due to overlap); IR (neat) 2228, 2959, 3052 

cm"1; HRMS m/z 198.11606 (calcd forCl3HuN2, 198.11570). 

Ar-Benzenesulfonyl-10-oxo-5b,6,7,8,9,9a-hexahydro-6,9-methano-10//-indeno[l,2-

6]indole (40). Obtained in a 16% yield from the reaction of norbomene and N-

benzenesulfonyl-2-iodoindole-3-carbonitrile (28c) according to the general procedure after 

purification by column chromatography using 2:1 hexanes/EtOAc: white solid, mp 175-177 

°C (hexanes); lH NMR (CDC13) 5 1.06-1.17 (m, 2H), 1.33-1.40 (m, IH), 1.50-1.57 (m, IH), 

1.64-1.84 (m, 2H), 2.64 (d, 7= 3.6 Hz, IH), 2.82 (d, 7= 5.1 Hz, IH), 2.89 (d, 7= 3.6 Hz, 

IH), 3.37 (d, 7= 5.1 Hz, IH), 7.29-7.39 (m, 2H), 7.47-7.52 (m, 2H), 7.59-7.65 (m, IH), 7.84-

7.93 (m, 3H), 7.96-7.99 (m, IH); 13C NMR (CDCI3) ô 28.2,29.2, 31.8,39.3, 39.8,46.3,61.6, 

114.3, 121.3, 122.1, 125.0, 125.8, 126.8, 128.7,129.7,134.6, 138.0, 140.7,167.5, 198.2; IR 

(neat) 1194, 1356,1695,2955 cm"1; HRMS m/z 377.109143 (calcd for CzaHtgNOsS, 

377.108386). 
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N-Methyl-6-oxo-6a,7,8,9,10,10a-hexahydro-7,10-iiiethano-6//-indeno[2,l-6]iiidole 

(41). Obtained in a 77% yield from the reaction of JV-methyl-3-iodoindole-2-carbonitrile 

(27b) and norbomene under the indicated conditions after purification by column 

chromatography using 4:1 hexanes/EtOAc: light yellow oil; lH NMR (CDCI3) 5 0.94-1.03 

(m, 2H), 1.33-1.37 (m, IH), 1.41-1.45 (m, IH), 1.62-1.77 (m, 2H), 2.46 (d, J = 2.7 Hz, IH), 

2.54 (d, J = 2.7 Hz, IH), 2.76 (d, J = 3.6 Hz, IH), 3.11 (d, J = 3.6 Hz, IH), 3.90 (s, 3H), 

7.16-7.20 (m, IH), 7.34-7.43 (m, 2H), 7.73-7.75 (m, IH); 13C NMR (CDC13) S 28.7, 28.9, 

30.0, 32.0, 38.6, 38.8, 42.3,62.0, 110.9, 120.1, 121.8, 122.5, 126.6, 140.9, 145.2, 146.2, 

196.3; IR (neat) 1682, 2952,3054 cm1; HRMS m/z 251.131315 (calcd for Cl7Hl7NO, 

251.131014). 

JV-Benzenesulfonyl-6-oxo-6a,7,8,9,10,10a-hexahydro-7,10-methano-6//-indeno[2,l-

6]indole (42). Obtained in a 69% yield from the reaction of norbomene and N-

benzenesulfonyl-3-iodoindole-2-carbonitrile (27c) according to the general procedure after 

purification by column chromatography using 2:1 hexanes/EtOAc: white solid, mp 147-149 

°C (hexanes); lH NMR (CDC13) 5 0.79-0.84 (m, IH), 0.93-0.97 (m, IH), 1.33-1.43 (m, 2H), 

1.63-1.73 (m, 2H), 2.41 (d, / = 3.0 Hz, IH), 2.56 (d, J = 3.0 Hz, IH), 2.79 (d, 7 = 5.1 Hz, 

IH), 3.03 (d, J = 5.1 Hz, IH), 7.33-7.39 (m, IH), 7.42-7.48 (m, 2H), 7.52-7.59 (m, 2H), 7.67-

7.71 (m, IH), 8.08-8.11 (m, 2H), 8.36 (d, J = 8.4 Hz, IH); I3C NMR (CDC13) ô 28.5, 29.0, 

31.9, 38.2, 39.3,41.7,61.7,115.9, 121.8, 124.1, 124.6, 127.5, 129.3, 129.4, 134.1, 138.6, 

140.3, 143.9, 155.7, 192.0; IR (neat) 1188, 1380,1699, 2954 cm'1; HRMS m/z 377.1091428 

(calcd forC22Hi9N03S, 377.108566). 

6-Nitro-23-diphenvl-l-indenone (43). Obtained in a 53% yield from the reaction of 

diphenylacetylene and 2-iodo-5-nitrobenzonitrile (29) according to the general procedure 

after purification by column chromatography using CH2CI2: red solid, mp 224-226 °C 

(CH2Cl2-hexanes); lH NMR (CDC13) S 7.30-7.48 (m, 12H), 8.33 (dd, / = 7.8, 2.1 Hz, IH), 

8.39 (d, 7=2.1 Hz, IH); l3C NMR (CDC13) ô 117.9, 121.3, 128.3, 128.4, 128.7, 129.2, 

129.3,129.7, 130.0, 131.6,131.7,136.2,148.6, 151.1,153.9,193.4(1 sp2 carbon missing 

due to overlap); IR (neat) 1335, 1519, 1707, 3080 cm"1; HRMS m/z 327.0896467 (calcd for 

C2IH,3N03, 327.089543). 
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5-Cyano-2,3-diphenyl-l-indenone (44). Obtained in a 47% yield from the reaction of 

l,4-dicyano-2-iodobenzene (22) and diphenylacetylene under the indicated conditions after 

purification by column chromatography using 1:2 hexanes/EtOAc: red solid, mp 179-181 °C 

(hexanes); lH NMR (CDC13) 8 7.25-7.31 (m, 5H), 7.35-7.41 (m, 3H), 7.45-7.47 (m, 3H), 

7.63-7.67 (m, 2H); l3C NMR (CDC13) S 116.6, 118.2, 122.9, 123.6,128.3, 128.4, 128.5, 

128.9, 129.2, 129.7, 129.9,130.0, 131.6,133.8, 133.9, 146.0,154.4, 194.6; IR (neat) 1716, 

2229, 3053 cm'1; HRMS m/z 307.100183 (calcd forC22Hl3NO, 307.099714). 

7-Nitro-l,2,3*4,4a,9a-hexahydro-l,4-methanofluoren-9-one (47). Obtained in an 81% 

yield from the reaction of norbomene and 29 according to the general procedure after 

purification by column chromatography using 4:1 hexanes/EtOAc: yellow oil; lH NMR 

(CDC13) Ô 0.76-0.81 (m, IH), 1.02-1.06 (m, IH), 1.37-1.50 (m, 2H), 1.52-1.83 (m, 2H), 2.50 

(d, J = 4.2 Hz, IH), 2.63-2.68 (m, 2H), 3.28 (d, J = 6.0 Hz, IH), 7.70 (d, J = 8.1 Hz, IH), 

8.45-8.52 (m, 2H); 13C NMR (CDCb) 8 28.4, 28.8, 32.4,40.8,41.4,48.2, 56.4, 118.5, 127.3, 

129.2, 140.0, 147.8, 162.7,206.6; IR (neat) 1341, 1527, 1718, 2954,3098 cm1; HRMS m/z 

243.089638 (calcd forCl4Hl3N03, 243.089543). 

6-Cyano-l,2,3*4,4a,9a-hexahydro-l,4-methanofluoren-9-one (48). Obtained in an 

85% yield from the reaction of norbomene and 4-cyano-2-iodobenzonitrile (22) according to 

the general procedure (reaction time -48 h) after purification by column chromatography 

using 4:1 hexanes/EtOAc: white solid, mp 135-137 °C (hexanes-EtOAc); lH NMR (CDCb) 

80.71-0.78 (m, IH), 0.99-1.05 (m, IH), 1.37-1.54 (m, 2H), 1.62-1.81 (m, IH), 2.45 (d,/ = 

3.6 Hz, IH), 2.58 (d, J = 6.0 Hz, IH), 2.64 (d, 7 = 3.6 Hz, IH), 3.22 (d, / = 6.0 Hz, IH), 7.62-

7.66 (m, IH), 7.77-7.84 (m, 2H); l3C NMR (CDCb) 8 28.7, 29.0, 32.6,41.0,41.6,48.1, 56.1, 

118.2, 118.4, 124.1,130.7, 131.3, 142.2,157.2, 207.6; IR (neat) 1711, 2227, 2965 cm '; 

HRMS m/z 223.100031 (calcd forCl5Hl3NO, 223.099714). 

5-Methoxy-l,2,3,4,4a,9a-hexahydro-l,4-methanofluoren-9-one (49). Obtained in a 

75% yield from the reaction of norbomene and 2-iodo-3-methoxybenzonitrile (21) according 

to the general procedure after purification by column chromatography using 4:1 

hexanes/EtOAc: beige solid, mp 82-83 °C (hexanes-EtOAc); 'H NMR (CDCb) 8 0.75-0.83 

(m, IH), 0.91-0.96 (m, IH), 1.36-1.39 (m, IH), 1.43-1.47 (m, IH), 1.61-1.70 (m, 2H), 2.46 

(d, / = 6.0 Hz, IH), 2.57-2.61 (m, 2H), 3.15 (d, / = 6.0 Hz, IH), 3.92 (s, 3H), 7.02-7.06 (m, 
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IH), 7.29-7.33 (m, 2H); l3C NMR (CDC13) 8 28.6, 29.0, 32.3, 38.6,40.2,45.6, 55.4, 55.8, 

114.8,115.2, 129.0, 140.7, 145.4, 157.1, 209.2; IR (neat) 1707, 2871, 2959 cm1; HRMS m/z 

228.1151534 (calcd for C,5HI602, 228.115030). 

6-Methoxy-l,2,3,4,4a,9a-hexahydro-l,4-methanofluoren-9-one (50). Obtained in an 

84% yield from the reaction of norbomene and 2-iodo-4-methoxybenzonitrile (30) according 

to the general procedure after purification by column chromatography (note: the R/of the 

byproduct, 4-methoxybenzonitrile, is very close to that of 50) using 4:1 hexanes/EtOAc: 

colorless oil; 'H NMR (CDC13) 8 0.83-0.86 (m, IH), 0.93-0.97 (m. IH), 1.39-1.45 (m, 2H), 

1.59-1.75 (m, 2H), 2.40 (d, J = 4.0 Hz, IH), 2.49 (d, J = 6.0 Hz, IH), 2.58 (d, J = 4.0 Hz, 

IH), 3.09 (d, J = 6.0 Hz, IH), 3.89 (s, 3H), 6.87-6.92 (m, 2H), 7.65 (d, J = 8.4 Hz, 1H); 13C 

NMR (CDCI3) S 28.8, 32.2,40.1,41.3,48.0, 55.6, 56.2, 109.2, 115.3, 124.9, 132.4, 160.1, 

162.8, 165.5, 192.4; IR (neat) 1702, 2871, 2954 cm'1; HRMS m/z 228.11549 (calcd for 

C|5Hi602, 228.11503). 
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CHAPTER 2. SYNTHESIS OF 3,4-DISUBSTITUTED 
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Pd-CATALYZED ANNULATION OF ALKYNES BY 
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Abstract 

Intramolecular carbopalladation of the cyano group has been employed for the synthesis 

of 3,4-disubstituted 2-aminonaphthalenes. (2-Iodophenyl)acetonitrile reacts with a variety of 

internal alkynes to afford 2-aminonaphthalenes in high yields with good regioselectivity. 

The scope and limitations of this process, which proceeds by an intramolecular addition of a 

vinylpalladium species to the triple bond of the cyano group, have been studied. The 

annulation of certain hindered propargylic alcohols affords 1,3-benzoxazine derivatives, 

rather than the expected 2-aminonaphthalenes. The involvement of trialkylamine bases in 

the formation of these heterocyclic compounds has been established. A proposed mechanism 

for the synthesis of 1,3-benzoxazine derivatives involves the formation of the expected 2-

amino-3-(l-hydroxyalkyl)naphthalenes, followed by their condensation with an iminium ion 

species formed from the trialkylamine base used in the reaction. 

Introduction 

The preparation of amines is of considerable importance in organic synthesis owing to 

the vast possibilities available for their further conversion into other functionalities. 

Aminonaphthalenes have been employed as precursors to a variety of substances that have 
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interesting industrial and pharmaceutical uses. For example, such complex heterocyclic 

systems as benzo[cJphenothiazines,' benzo[/]quinazolines,2 benzindoles,3 benz[a]- and 

benz[c]acridines,4 naphtho[l,2-</]imidazoles,5 and others have been synthesized from 

naphthylamines. For over a century, aminonaphthalenes have been a staple of the dyestuffs 

industry, serving as diazo and coupling components in the preparation of azo dyes.6 Despite 

the significant carcinogenic and mutagenic activity of 1- and 2-naphthylamines,6b'7 their 

derivatives have been explored as spasmolytic, emetic and antitumor agents.8 

With the emergence of asymmetric synthesis, 2-aminonaphthalenes have found new uses 

as starting materials for the synthesis of binaphthyl Cz-symmetric chiral ligands.9 In 

particular, l,l'-binaphthyl-2,2'-diamine chiral auxiliaries have been used for enantioselective 

reduction of ketones, asymmetric synthesis of lactones, asymmetric hydrogénation of a-

acylaminoacrylic acids and asymmetric alkylation of aromatic aldehydes.10 Additional 

substituents at positions 3 and 3' of binaphthyl systems have been recognized to impose 

further steric interactions, which often results in a remarkable increase in asymmetric 

induction.9 This underscores the importance of developing effective and practical routes to 

3-substituted 2-aminonaphthalenes. In another asymmetric application, 2-naphthylamines 

have been used for the synthesis of naphthyl-Troger's base, a representative of a class of 

chiral structures that have both theoretical and practical interest as molecular receptors, chiral 

solvating agents (e.g., in host-guest complexes) and chiral modifiers in enantioselective 

reactions.11 

Naphthylamines can be prepared from naphthalene and its derivatives by a number of 

traditional synthetic organic methods available for the synthesis of aromatic amines.12 

Classical routes to aminonaphthalenes include the treatment of naphthols with bisulfites and 

ammonia (Bucherer reaction)13 and the acid-catalyzed transformation of tetralone oximes 

(Semmler-Wolff reaction).14 To the best of our knowledge, there is no general and efficient 

methodology for the synthesis of aminonaphthalenes by alkyne annulation.15 Yet, such an 

approach could be extremely valuable, as it would allow for rapid construction of a fairly 

complex functionalized cyclic system from two independent components. 

Recently, useful palladium-aikyne annulation methodology has been developed in this 

group, which offers convenient routes to various carbo- and heterocyclic compounds.16 
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These reactions involve the insertion of an internal alkyne into an arylpalladium intermediate 

and subsequent cyclization onto a functional group present in the ortho position. In 1999, 

Qingping Tian started investigating the possibility that a cyanomethyl group might serve as 

the neighboring functional group and that the vinylpalladium intermediate might add across 

the carbon-nitrogen triple bond to produce 2-aminonaphthalenes (eq l).17 

CO* • » 

Using the annulation of diphenylacetylene by 2-iodophenylacetonitrile (eq 1; R\R2 = Ph) 

as a model system, Tian conducted extensive optimization of the reaction conditions and 

arrived at the following optimized procedure: 5 mol % of Pd(OAc)z, 3 equiv of diphenyl­

acetylene, 2 equiv of Et;N, 1 equiv of n-BmNCl in DMF is heated at 100 °C for 48 h. He 

explored the scope and limitations of this annulation by employing several other alkynes (see 

below). Here, we wish to report full details of our work on developing the Pd-catalyzed 

alkyne annulation of internal alkynes by (2-iodophenyl)acetonitrile into useful methodology 

for the synthesis of 3,4-disubstituted 2-aminonaphthalenes.18 

Results and Discussion 

The mechanism of 2-aminonaphthalene formation proposed by Tian17 is shown in 

Scheme 1. This process presumably starts with reduction of the Pd(OAc)z to the actual 

catalyst Pd(0). The oxidative addition of (2-iodophenyl)acetonitrile to Pd(0) produces an 

arylpalladium intermediate I, which rapidly adds across the triple bond of the alkyne to 

afford a vinylic palladium species H. A priori, two different paths for intramolecular 

carbopailadation of the cyano group in II appear plausible. The vinylic palladium moiety II 

may undergo addition to the neighboring CN triple bond to generate the iminopalladium 

intermediate III, which undergoes rapid tautomerization to the aminopaliadium species IV 

(path 1). An alternative path might involve base-induced formation of ketenimine V19 and 

subsequent syn addition of the vinylpalladium moiety to the C-N double bond to generate IV 
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Scheme 1 

Pd(OAc)2 

ce, 
R — R 

ce: 
R R il 

path 2 

(path 2). Based on the success of our previous annulation of diphenylacetylene with 2-(2-

iodophenyl)-2-methylpropanenitrile (eq 2),20 which presumably proceeds via a very similar 

mechanism, we favor path 1. In the next step, aminopalladium complex IV is reduced to the 

final product, accompanied by regeneration of the Pd(0) catalyst. Although we have 

evidence indicating that the Pd(H) moiety in IV is reduced by EtgN (vide infra),21 we cannot 

exclude some involvement of DMF, since the yield of the annulation product was sharply 

reduced when other solvents, such as DMSO and DMA, were used in the reaction.17 Also, 

traces of water inadvertently present in DMF or n-BiuNCl may be the hydrogen source in the 

reduction22 or simple protonation of IV to generate Pd(H), which is subsequently reduced to 

Pd(0) by other species. 

Ph = Ph 

cat Pd 
DMF-H20 

96% 
(2) 
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To study the scope of this annulation, a variety of internal alkynes have been introduced 

into the reaction (Table 1). 2-Amino-3,4-diarylnaphthalenes 1 and 2 were obtained in very 

good yields from annulation of the corresponding diarylacetylenes (entries 1 and 2). The 

current methodology is expected to be readily applicable to the synthesis of various 2-amino-

3,4-diary (naphthalenes from symmetrical diarylacetylenes. An excellent overall yield of the 

annulation product was also obtained in the reaction of an unsymmetrical alkyne, 2-

(phenylethynyl)toluene (entry 3). However, both possible regioisomers 3 and 4 were isolated 

in approximately equal amounts. Apparently, the difference between steric demands of the 

two aryl substituents in this diarylacetylene is not large enough to command better 

regioselectivity in arylpalladium addition across the triple bond of the alkyne (see below). 

Applying our reaction conditions to the attempted annulation of 2-(phenylethynyl)phenol was 

found to afford 2-phenylbenzofuran instead of the target aminonaphthalene (eq 3). Examples 

of this Pd-catalyzed cyclization are well known in the literature.23 

OH 

The annulation works reasonably well for internal alkynes other than diarylacetylenes. 

Thus, 2-amino-4-methyl-3-phenylnaphthalene (5) was isolated in a 65% yield as a single 

isomer from the reaction of (2-iodophenyl)acetonitrile and 1 -phenyl-1 -propyne (entry 4). 

The regioselectivity of this reaction can be nicely explained by addition of the aryl group of 

the arylpalladium intermediate I (Scheme 1) to the less hindered end of the alkyne, placing 

the palladium moiety on the more hindered end of the original triple bond. Such 

regioselectivity for the addition has been frequently observed in our previous research.24 As 

a result, the more sterically hindered group present in the alkyne ends up in the 3 position of 

the naphthalene product and the less hindered group in the 4 position, which is indeed 

observed. However, for this regioselectivity to be pronounced, the two groups must be 

significantly different sterically (entries 4,10, 11, 14 and 19). In other cases, formation of 

both possible regioisomers may be expected (entries 3 and 5). When 1-phenyl-1-butyne was 

employed as the alkyne, the anticipated aminonaphthalene 6 was isolated in a 37% yield 



www.manaraa.com

Table 1. The Pd-Catalyzed Annulation of Internal Alkynes by (2-lodoaryl)acetonitriles (eq 1)" 

entry nitrile 
alkyne 

R1 R-
product(s) isolated 

yield 

, CC" 

/)-MeOCf,H4 p-MeOQJlt 

Ph «-MeC6H4 

83" 

OMe 
80 

OMe 

NH2 

Ph 
Me 44 + 45 

Me Ph 

NH2 

Ph 

Me 5 

65 
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Table 1. (continued) 

alkyne 
entry nitrite , , 

K K 

Et Ph 

6 CHiOH Ph 

7 CH2OH CH2OH 

8 CMeiOH CMeiOH 

9 CHiOMe CHiOMe 

10 Me /-Bu 

product(s) 
% 

isolated 
yield 
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Table 1. (continued) 

alkyne 
enlry nilrilc , r2 

11 Ph /-Bu 

12 Ph SiMe3 

13 Ph H 

14 Me Si(f'-Pr)a 

15 M-Pr M-Pr 

16 Ph C(0)Me 

17 Me CH(OEl)2 

product(s) 
% 

isolated 
yield 

NH 
/-Bu 

/-Bu 

10 11 

CN 

NH 

Si(/-Prfe 

Me 13 

27+15" 

58" 

51 

54 

è 
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Table 1. (continued) 

entry nilrile 
alkyne 

R1 R-
product(s) 

% 
isolated 

yield 

18 

19 

Ph C=C 

MeO 

20 TT' 
CN 

MeO^^^^I 16 
Ph 

21 /i-Pr 

22 

OAc 

CN Ph 

19c 

Ph 

f Bu C=C / Bu 

Ph 

M-Pr 

Ph 

MeO 

MeO 

91' 

81 

62 

53 

" See the Experimental Section for the reaction conditions. 6 Reference 17. r Two equivs of H20 were employed in the reaction; without water, the 
yield was 61%, d Isolated as an inseparable mixture with about 6% of the other regioisomcr as determined by II NMR spectral analysis. 
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along with an unexpected product 7, which obviously arose from the second regioisomcr 

(entry 5).17 While we observed only a single isomer 8 in the annulation of 3-phenyl-2-

propyn-l-ol (entry 6), we cannot rule out the possibility that an aldehyde or carboxylic acid 

product similar to 7 was formed in the reaction, but was subsequently lost to side reactions, 

such as oxidation or condensation. 

Surprisingly, symmetrical propargylic diols failed to afford annulation products (entries 7 

and 8). Protecting the hydroxy groups in 2-butyne-l,4-diol did not rectify the problem, as the 

corresponding dimethoxy derivative did not undergo annulation either (entry 9). The reasons 

behind these results are unclear and may include coordination of these electron-rich 

functionalized alkynes to the palladium catalyst prior to the oxidative addition step, which 

diverts the catalyst from the annulation process. 

Internal alkynes bearing a bulky /-butyl group led to the expected 2-aminonaphthalenes 9 

and 10 with good regioselectivity (entries 10 and 11). The regiochemistry of these and other 

products in Table 1 could be determined by ID and 2D lH NMR spectral analysis.17 We also 

observed the formation of the tetracyclic amine 11 from the in situ cyclization of 10 by a 

mechanism that is unclear (entry 11).17 The reaction of l-phenyl-2-(trimethylsilyl)acetylene 

afforded the simple coupling product 12 in a 58% yield (entry 12). None of the desired 

aminonaphthalene product was observed. This reaction presumably proceeds by the 

desilylation of the alkyne to produce phenylacetylene, which undergoes coupling with (2-

iodophenyl)acetonitrile to give 12. The same product 12 was also obtained in a similar yield 

when phenylacetylene was used as the alkyne (entry 13). A significant amount of 1,4-

diphenylbutadi yne was also detected by GC-MS in this reaction mixture. The more hindered 

silyl group in 1 -(trii sopropy Isi ly I)-1 -propyne was stable to desilylation as this alkyne 

afforded a 54% yield of the aminonaphthalene 13 (entry 14). 

The unusual product 14 was formed as the sole product in the reaction of 4-octyne (entry 

15). The (^-stereochemistry of 14 was established by Tian from *H NMR coupling 

constants between the olefinic hydrogens (/ = 16.2 Hz), and fully confirmed by 2D NOES Y 

spectroscopy.17 Internal alkynes bearing electron-withdrawing groups did not undergo 

annulation, possibly because of competing Michael addition-like processes (entries 16 and 

17). Also unsuccessful was the annulation of 1,4-diphenylbutadi yne (entry 18). It has been 
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reported, however, that diarylbutadiynes may easily undergo Pd-catalyzed formation of 

1,2,3-butatriene derivatives under conditions similar to ours.25 Another 1,3-diyne, 2,2,7,7-

tetramethyl-3,5-octadiyne, afforded the expected annulation product 15 in excellent yield and 

with very good regioselectivity (entry 19). 

An electron-rich (2-iodophenyl)acetonitrile derivative 16 was prepared and used in the 

annulation of diphenylacetylene and 4-octyne (entries 20 and 21). In both cases, the 

corresponding 2-aminonaphthalenes 17 and 18 were obtained in good yields. Interestingly, 

we did not observe any unsaturated product similar to 14 in the reaction of 4-octyne (entry 

21). No electron-poor derivatives of (2-iodophenyl)acetonitrile were examined in the 

annulation, since our previous research on nitrile carbopalladation indicated that 

arylpalladium and vinylpalladium intermediates (I and II, Scheme 1) formed from electron-

deficient substrates are usually not nucleophilic enough for successful attack on the cyano 

group.20,26 

We have also prepared a number of protected cyanohydrins 19 (Scheme 2) in order to 

investigate the possibility of synthesizing 3,4-disubstituted 2-amino-l-naphthols by this 

methodology. Unfortunately, only 2-acetoxy-2-(2-iodophenyl)acetonitrile (19c) proved 

stable enough to survive our reaction conditions, cleanly affording the oxazole derivative 20 

Scheme 2 

OSiR'R 

19a R\ R = Me 
19b R' = f-Bu, R = Me c 19d 

OAc OH OTHP 

19c 19e 

(a) R'R2SiCN, cat. KCN, cat. 18-crown-6, CH2CI2, r.t.; (b) NaCN, piperidine, aq NaHS03,0 °C 
to r.t.; (c) KCN, aq NaHS03,0 °C to r.t.; (d) Ac20, pyridine, r.t.; (e) 3,4-dihydropyran, cat. p-
TsOH, CH2Cl2, r.t. 
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in a 53% yield (entry 22). An almost identical yield (52%) of 20 was achieved when the 

reaction was run at 130 °C. Silyl-protected cyanohydrins 19a and 19b underwent a retro-

reaction to produce 2-iodobenzaldehyde as the major product. Even the piperidine derivative 

19d was hydrolyzed to 2-iodobenzaldehyde, presumably by traces of water present in the 

DMF or fz-BujNCl. Attempted annulation of the THP-protected cyanohydrin 19e afforded a 

messy reaction mixture containing numerous products that could not be identified. 

A possible mechanism for the formation of unsaturated products 7 and 14 has been 

proposed by Tian (Scheme 3).17 Oxidative addition of (2-iodophenyl)acetonitrile to Pd(0) 

and subsequent insertion of 4-octyne furnishes intermediate VI. This species may undergo 

P-hydrogen elimination to produce an aliéné intermediate VII. Addition of the Pd-H to the 

cyano group will generate an acyl-like organopalladium intermediate VIII, which in turn can 

add to the aliéné to furnish (after imine tautomerization) a <r- or jc-benzylic intermediate IX, 

which might be expected to eliminate HPdX to generate the new carbon-carbon double bond 

and eventually regenerate the Pd(0) catalyst. 

Pd(0) 

n-Pr- -n-Pr 

Scheme 3 

cC= 
n - P r n - P r  

VI 

-C=N 

CG> 
n-p/ ~^Et 

VII 

n-P r Et 
VIII 

- HPdl 

We also propose an alternative mechanism shown in Scheme 4. Upon formation of the 

aminopalladium intermediate X during the normal annulation cycle (Scheme 1), the 

palladium moiety may insert into a benzylic C-H bond of the alkyl substituent in the 3 

position of the naphthalene and eventually migrate to the alkyl chain to furnish an 
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Scheme 4 

NHPdl 

alkylpalladium intermediate IX by a mechanism that differs from the one in Scheme 3. After 

a palladium fi-hydrogen elimination, IX can produce the product 14. We have no evidence 

that allows us to choose between these two mechanisms. 

Using hindered propargylic alcohols for the annulation with (2-iodophenyl)acetonitrile, 

we have made an unusual observation that 1,3-benzoxazine derivatives 21 are produced 

instead of the anticipated 2-aminonaphthalenes (eq 4, R = Ph or Me). Thus, annulation of (2-

iodophenyl)acetonitrile onto 2-methyl-3-pentyn-2-ol afforded 2,4,4,5-tetramethyl-1,4-

dihydro-2//-naphtho[2,3-c/][l,3]oxazine (21a) in a 25% isolated yield (entry I, Table 2). 

Analogous 1,3-benzoxazine derivative 21b was obtained from 2-methyl-4-phenyl-3-butyn-2-

ol in a 35% yield under our original annulation conditions. When the reaction was run at 130 

°C, the yield of 21b increased to 50% (entry 2). Substituting triethylamine for another base, 

th-n-butylamine, led to the formation of 4,4-dimethyl-5-phenyl-2-propyl-1,4-dihydro-2//-

naphtho[2,3-<i][l,3]oxazine (21c) in a 38% yield (entry 3). This result provides clear and 

unambiguous evidence that the C2-carbon of the 1,3-oxazine ring comes from the 

trialkylamine base, one of the alkyl groups of which is incorporated into the structure of the 

final product. It has also been established that primary alkyl groups are transferred 

np" • r^-Uh -2E5L 
N(CH2R')3 (4) 

21 
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Table 2. Synthesis of 1,3-Benzoxazine Derivatives (eq 4)" 

entry R amine (2 equiv) product % isolated yield 

H 

1 Me Et3N fYYV 25 Et3N 

1 A 21a 
H 

2 Ph Et3N fYYV 50* 

Ph / 21b 
H 

3 Ph n-BuaN [[_ 38 

Ph 21c 
H 

4 Ph i-Pr2NEt fYYV 16C 

Ph / 21b 

" See the Experimental Section for the reaction conditions. 6 This reaction was run at 130 °C; the yield at 
100 °C was 35%. 96% Conversion of the starting material after 48 h. 

preferentially from the trialkylamine as no incorporation of the isopropyl unit was found 

when diisopropylethylamine was employed (entry 4). 

The following mechanism accounts for the Pd-catalyzed synthesis of 1,3-benzoxazine 

derivatives from (2-iodophenyl)acetonitrile, hindered propargylic alcohols and trialkylamines 

(Scheme 5). The marked difference in steric bulk between the two substituents on the triple 

bond of the alkyne causes regioselective formation of the vinylpalladium intermediate XI 

shown in Scheme 5, which proceeds to add to the cyano group and eventually form the 

aminopalladium species XH It is possible that the Pd(H) in XII is reduced at this point by 

the trialkylamine via a mechanism proposed in Chapter 1. This reduction involves Pd(H) 

insertion into the activated a-C-H bond of the amine, reductive elimination and 

fragmentation of the resulting (a-aminoalkyl)palladium species, which leads to regeneration 
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Scheme 5 

CC • —R 

Pd(0) 

NHPdl 

of Pd(0) and formation of the anticipated 2-aminonaphthalene product and an iminium 

moiety (Scheme 5). It is also possible that this iminium intermediate, which has been 

proposed in other Pd catalyzed transformations of triethylamine,216'27 may be formed from 

triethylamine and a Pd(II) species at some other point in the reaction. The iminium 

intermediate then undergoes nucleophilic attack by the two nucleophilic groups present in the 

aminonaphthalene, which results in formation of the 1,3-oxazine ring. This mechanism may 

explain the exclusive transfer of primary alkyl groups from the amine (entry 4, Table 2), as 

the iminium ion species formed from a secondary alkylamine may be too hindered for facile 

condensation with the bulky alcohol moiety. 

The reaction between (2-iodophenyi)acetonitrile and 2-methyl-3-pentyn-2-ol afforded 

another unusual product besides 21a (eq 5). A complex furan derivative 22 was isolated 
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in a 26% yield. This compound is clearly a product of a double alkyne insertion, which 

presumably proceeds by the mechanism shown in Scheme 6. Instead of adding to the C-N 

triple bond of the cyano group, the vinylpalladium intermediate XIII apparently inserts a 

second molecule of the alkyne to furnish dienylpalladium species XIV. Intramolecular 

attack of an OH group then leads to the final product 22. 

Scheme 6 

Conclusions 

The palladium-catalyzed annulation of alkynes with (2-iodophenyl)acetonitrile has been 

studied. This process represents a general approach to 3,4-disubstituted 2-

aminonaphthalenes, which are formed in moderate to very good yields from a variety of 

internal alkynes. In many cases, the annulation exhibits excellent regioselectivity. The 

unusual formation of 1,3-benzoxazine derivatives from certain hindered propargylic alcohols 

has also been observed. This reaction apparently proceeds with involvement of the 

trialkylamine bases present in the reaction, which transfer one of their alkyl groups to the 

final product. 
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Experimental Section 

General. lH and l3C NMR spectra were recorded at 300 and 75 MHz or 400 and 100 

MHz, respectively. Thin-layer chromatography was performed using commercially prepared 

60-mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm) and basic KMnQ» solution [3 g of KMn04 + 20 g of K2CO3 + 

5 mL of NaOH (5%) + 300 mL of H2O]. All melting points are uncorrected. High resolution 

mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector mass 

spectrometer using EI at 70 eV. IR spectra were measured on a Bomem Michelson MB-102 

FT-BR spectrometer. All reagents were used directly as obtained commercially unless 

otherwise noted. Pd(OAch was donated by Johnson Matthey, Inc. and Kawaken Fine 

Chemicals Co., Ltd. 

Reagents. Diphenylacetylene, triethylamine, tri-n-butylamine, 4-octyne, 2,2,7,7-

tetrameth y I -3,5 -octadi yne, phenylacetylene, l-phenyl-2-(trimethylsilyl)acetylene and 1-

triisopropylsilyl-l-propyne were obtained from Aldrich Chemical Co., Inc. Tetra-n-

butylammonium chloride, (2-iodophen y 1 )acetoni tri le and 4,4-dimethyl-2-pentyne were 

obtained from Lancaster Synthesis, Inc. 1-Phenyl- 1-propyne, 1-phenyl-l-butyne, 3-phenyl-

2-propyn-l-ol, 2-methyl-3-pentyn-2-ol and 2-methyl-4-phenyl-3-butyn-2-ol were obtained 

from Farchan Laboratories, Inc. 3,3-Dimethyl-1 -phenyl-1 -butyne was prepared according to 

a previous literature procedure.24®1 

(2-Iodo-4,5-dimethoxyphenyl)acetonitrile (16) was prepared from 2-iodo-4,5-

dimethoxybenzyl bromide (prepared in two steps from 4,5-dimethoxybenzyl alcohol)28 

according to a published procedure.29 A solution of 2-iodo-4,5-dimethoxybenzyl bromide 

(0.853 g, 2.39 mmol) and 18-crown-6 (0.053 g, 0.2 mmol) in 5 mL of MeCN was placed 

over solid KCN (0.338 g, 5.2 mmol). The reaction mixture was stirred vigorously for 24 h, 

after which it was filtered and the amount of solvent was reduced on a rotary evaporator. 

The mixture was diluted with water, extracted with CH2CI2, dried (NazSOa), evaporated and 

the residue was purified by column chromatography using 1:1 hexanes/ethyl acetate to 

produce 0.605 g (84%) of 16: white solid, mp 110-111 °C (hexanes/ethyl acetate); lH NMR 
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(CDCb) S 3.76 (s, 2H), 3.87 (s, 3H), 3.90 (s, 3H), 6.98 (s, 1H), 7.24 (s, 1H); 13C NMR 

(CDCb) 8 29.2,55.9, 56.1, 86.8, 111.5, 117.4, 121.5, 125.1, 149.1, 149.5; IR (neat) 3086, 

2967, 2916, 2845, 2257 cm'1; HRMS mJz 302.97609 (calcd for Cl0Hl0INO2, 302.97563). 

2-Acetoxy-2-(2-iodophenyl)acetonitrile (19c). To a cold (0 °C) solution of 2-

iodobenzaldehyde (1.469 g, 6.33 mmol) in aq 2M NaHSOs (15 mL) was added a solution of 

KCN (1.645 g, 25.3 mmol) in 3.25 mL of water. The reaction mixture was stirred for 1.5 h at 

room temperature, then extracted with ether. The organic extracts were washed with water, 

dried (NaiSQi) and evaporated to afford 1.245 g (76%) of 2-hydroxy-2-(2-

iodophenyl)acetonitri le,30 0.39 g (1.5 mmol) of which was dissolved in a mixture of 7 mL of 

AciO and 7 mL of pyridine and stirred overnight at room temperature.31 The reaction 

mixture was then poured into water and extracted with ether. The organic extracts were 

washed with aq HC1, aq NaHCOs, and water, dried (NaiSO,), evaporated and the residue was 

purified by column chromatography using 4:1 hexanes/ethyl acetate to afford 0.42 g (93%) of 

19c: white solid, mp 57-59 °C (hexanes/ethyl acetate); lH NMR (CDCI3) 5 2.21 (s, 3H), 6.52 

(s, 1H), 7.19 (td, 7 = 7.8, 1.5 Hz, 1H), 7.48 (td,/ = 7.8, 1.2 Hz, 1H), 7.73 (dd,/=7.8,1.5 Hz, 

1H), 7.92 (dd, 7=7.8, 1.2 Hz, 1H); ,3C NMR (CDC13) Ô 20.2, 67.0, 97.9, 115.4, 129.0, 

129.3, 131.9, 134.1, 140.2, 168.6; IR (neat) 3064,2935, 2845, 2246, 1756 cm1; HRMS m/z 

300.96058 (calcd for QoHglNOz, 300.95998). 

General Procedure for the Palladium-Catalyzed Reaction of (2-Iodophenyl)-

acetonitrile and Internal Alkynes. Palladium acetate (0.0028 g, 0.0125 mmol), Et3N (0.070 

mL, 0.5 mmol), n-BmNCl (0.070 g, 0.25 mmol), (2-iodophenyl)acetonitrile (0.061 g, 0.25 

mmol), the alkyne (0.75 mmol), and 5 mL of DMF were placed in a 4 dram vial, which was 

heated in an oil bath at 100 °C for 48 h unless indicated otherwise. The reaction mixture was 

cooled, diluted with ether, washed with satd aq NH4CI, dried over Na^SCL or MgSC>4, and 

filtered. The solvent was removed on a rotary evaporator and the product was isolated by 

column chromatography on silica gel. The following compounds, prepared by the above 

procedure, have been previously described by us:18 2-amino-3,4-diphenylnaphthalene (1), 2-

amino-4-methyl-3-phenylnaphthalene (5), 2-amino-3-rm-butyl-4-methylnaphthalene (9), and 

2 amino-3-((£)-l-propenyl)-4-n-propylnaphthalene (14). 

The following new compounds were prepared by the above procedure: 
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2-Aimno-3,4-di(4-methoxyphenyl)naphthalene (2). Obtained as a yellow solid in an 

80% yield from the reaction of (2-iodophenyl)acetonitrile and bis(4-methoxyphenyl)-

acetylene after purification by column chromatography using 2:1 hexanes/ethyl acetate: mp 

194-196 °C (EtOH); lH NMR (CDC13) S 3.76 (s, 3H), 3.77 (br s, 2H), 3.78 (s, 3H), 6.73-6.79 

(m, 4H), 7.00-7.05 (m, 4H), 7.10-7.12 (m, 2H), 7.35-7.41 (m, 2H), 7.64 (d, J = 8.0 Hz, IH); 

l3C NMR (CDCb) S 55.1, 108.0, 112.9, 113.8, 122.3, 125.5, 126.0, 126.9, 127.6, 129.8, 

131.5, 131.6, 131.9, 134.3, 139.7, 142.7, 157.9, 158.2(1 sp3 carbon missing due to overlap); 

IR (neat) 3465, 3365, 3052, 3012, 2957, 2837 1613, 1240 cm"1; HRMS m/z 355.14795 (calcd 

for C24H21NO2, 355.15723). 

2-Amino-3-(2-methylphenyl)-4-phenylnaphthalene (3). Obtained as a brown solid in a 

44% yield from the reaction of (2-iodophenyl)acetonitrile and 2-(phenylethynyl)toluene after 

purification by column chromatography using 4:1 hexanes/ethyl acetate (R/= 0.44): mp 172-

174 °C (hexanes/ethyl acetate); *H NMR (CDCb) S 1.93 (s, 3H), 3.75 (br s, 2H), 7.01-7.25 

(m, 12H), 7.36 (t, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H); I3C NMR (CDCb) S 20.0, 108.2, 

122.5, 124.8, 125.6, 126.1, 126.5, 126.9, 127.0, 128.1, 128.3,128.9, 129.3, 129.6, 130.7, 

131.1, 134.3, 136.5, 138.5, 142.4 (1 sp2 carbon missing due to overlap); IR (neat) 3469, 

3368, 3043, 3024, 2928, 1617,1435 cm1; HRMS m/z 309.15227 (calcd for C^H^N, 

309.15175). NOE was detected between the NH2 (3.75 ppm) and CH3 (1.93 ppm) groups in 

the 2D NOESY spectrum of 3. 

2-Amino-4-(2-methylphenyl)-3-phenylnaphthalene (4). Obtained as an amber oil in a 

45% yield from the reaction of (2-iodophenyl)acetonitrile and 2-(phenylethynyl)toluene after 

purification by column chromatography using 4:1 hexanes/ethyl acetate (R/= 0.48): 'H NMR 

(CDCb) 8 2.08 (s, 3H), 3.66 (br s, 2H), 7.00-7.26 (m, 11H), 7.33-7.38 (m, 2H), 7.67 (d, / = 

7.6 Hz, 1H); 13C NMR (CDCb) 8 19.8, 107.9, 122.3, 125.6, 125.7, 126.0, 126.5, 126.8, 

127.2, 127.3, 127.4,127.5, 129.3, 129.9,131.0, 131.1,134.5, 136.8, 139.1, 139.4, 142.3; IR 

(neat) 3476, 3380, 3058, 3019, 2923, 1616 cm1; HRMS m/z 309.15227 (calcd forC^H^N, 

309.15175). No NOE was detected between the NH, (3.66 ppm) and CH3 (2.08 ppm) 

groups. 

2-Amlno-4-hydroxymethyl-3-phenylnaphtiialene (8). Obtained as a yellow oil in a 

29% yield from the reaction of (2-iodophenyl)acetonitrile and 3-phenyl-2-propyn-l-ol after 
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purification by column chromatography using 2:1 hexanes/ethyl acetate: lH NMR (CDCI3) S 

1.60 (br s, IH), 3.80 (br s, 2H), 4.79 (s, 2H), 7.09 (s, IH), 7.31-7.36 (m, 3H), 7.40-7.47 (m, 

2H), 7.50-7.54 (m, 2H), 7.65 (d, / = 8.0 Hz, IH), 8.12 (d, /= 8.4 Hz, IH); l3C NMR (CDC13) 

S 59.8, 109.2, 123.2, 124.4, 126.2, 126.3, 128.0, 128.9, 129.1, 129.8, 131.2,134.4, 134.8, 

137.0, 142.2; IR (neat) 3450, 3390, 3063,3025, 2929,2851, 1621 cm1; HRMS m/z 

249.11577 (calcd forCi7Hi5NO, 249.11536). 

2-Amino-4-methyl-3-(trlisopropylsilyl)naphlhalene (13). Obtained as a green oil in a 

54% yield from the reaction of (2-iodophenyl)acetonitrile and 1-triisopropylsilyl-l-propyne 

after purification by column chromatography using 10:1 hexanes/ethyl acetate: H NMR 

(CDCI3) 5 1.16 (d, / = 7.5 Hz, 18H), 1.65 (heptet, J = 7.5 Hz, 3H), 2.79 (s, 3H), 3.97 (br s, 

2H), 6.84 (d, J = 1.2 Hz, IH), 7.24 (td, J = 8.4,1.5 Hz, IH), 7.35 (td, / = 8.1 Hz, IH), 7.52 

(dd, 7=8.1,0.6 Hz, IH), 7.91 (d, 7=8.4 Hz, IH); l3C NMR (CDC13) S 14.1, 19.4, 21.8, 

108.2, 122.0, 124.2, 125.7, 126.4, 127.7, 135.1, 144.1, 149.6 (1 sp2 carbon missing due to 

overlap); IR (neat) 3490, 3381, 3062, 2948, 2871, 1615 cm '; HRMS m/z 313.22300 (calcd 

forC20H3iNSi, 313.22258). 

2-Amino-3-rerr-butyl-4-(teit-butylethynyl)naphthalene (15). Obtained as an 

inseparable mixture with the other regioisomcr (about 6%) as a brown oil in a 91% yield 

from the reaction of (2-iodophenyl)acetonitrile and 2,2,7,7-tetramethyI-3,5-octadiyne after 

column chromatography using 4:1 hexanes/ethyl acetate: *H NMR (CDCI3) S 1.43 (s, 9H), 

1.78 (s, 9H), 4.05 (br s, 2H), 6.92 (s, IH), 7.24-7.34 (m, 2H), 7.46-7.49 (m, IH), 8.34-8.37 

(m, IH); l3C NMR (CDC13) S 29.3, 30.6,32.3, 38.0,79.2, 110.6, 113.3, 120.6, 123.2, 125.0, 

125.9, 126.4, 130.1, 132.5, 138.0, 143.7; IR (neat) 3510, 3392,3067, 2969,2923, 2866, 

2207, 1619 cm '; HRMS m/z 279.19915 (calcd forCzoH^N, 279.19870). 

2-Amino-6,7-dimethoxy-3,4-diphenylnaphthalene (17). Obtained as an off-white solid 

in an 81% yield from the reaction of 16 and diphenylacetylene after purification by column 

chromatography using 2:1 hexanes/ethyl acetate: mp 177-179 °C (EtOH); lH NMR (CDCI3) 

8 3.64 (br s, 2H), 3.66 (s, 3H), 4.00 (s, 3H), 6.70 (s, IH), 6.98 (s, IH), 7.04 (s, IH), 7.09-7.26 

(m, 10H); l3C NMR (CDC13) S 55.6, 55.8, 104.4, 106.2, 107.9,122.3, 126.3,126.7, 127.5, 

128.2, 130.2, 130.7, 130.8, 137.9, 138.4,139.4,141.1,146.9, 149.8 (1 sp2 carbon missing 
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due to overlap); IR (neat) 3460,3366, 3059, 3000,2962,2934, 2834, 1614,1495 cm'1; 

HRMS m/z 355.15787 (calcd for C24H21NO2, 355.15723). 

2-Amino-6,7-dimethoxy-3,4-di-n-propylnaphlhalene (18). Obtained as an amber oil in 

a 62% yield from the reaction of 16 and 4-octyne after purification by column 

chromatography using 1:1 hexanes/ethyl acetate: H NMR (CDCI3) 8 1.09 (t, J = 7.6 Hz, 

3H), 1.11 (t, J = 7.6 Hz, 3H), 1.57-1.70 (m, 4H), 2.64-2.69 (m, 2H), 2.93-2.97 (m, 2H), 3.70 

(br s, 2H), 3.96 (s, 3H), 3.97 (s, 3H), 6.84 (s, IH), 6.88 (s, IH), 7.17 (s, IH); 13C NMR 

(CDCI3) 8 14.8, 14.9, 22.9, 24.0, 30.2, 31.3, 55.7, 55.8, 104.0, 105.2, 108.1, 122.1, 125.7, 

129.4, 135.7, 141.7, 146.9, 148.9; IR (neat) 3457, 3370,3004, 2956, 2869, 2826, 1627 cm1; 

HRMS m/z 287.18906 (calcd for Cl8H25N02, 287.18853). 

2-Methyl-4,5-diphenylnaphtho[2,l-<f|oxazole (20). Obtained as a white solid in a 53% 

yield from the reaction of 19c and diphenylacetylene after purification by column 

chromatography using 2:1 hexanes/ethyl acetate: mp 222-224 °C (hexanes/ethyl acetate); *H 

NMR (CDCI3) 8 2.03 (s, 3H), 7.01-7.02 (m, IH), 7.06-7.10 (m, 3H), 7.16-7.28 (m, 5H), 7.35-

7.40 (m, IH), 7.44-7.46 (m, IH), 7.49-7.54 (m, IH), 8.50 (d, J = 8.8 Hz, IH), 9.56 (s, IH); 
l3C NMR (CDCb) 8 23.5, 117.9,123.1, 125.6, 126.3, 126.4, 126.5, 126.9. 127.5, 127.6, 

128.5, 130.6, 131.3, 131.6, 131.9, 132.7, 136.8, 138.6, 144.2, 170.3; IR (neat) 3060, 1646, 

1513, 1494, 1277 cm1; HRMS m/z 335.13157 (calcd forC24Hl7NO, 335.13101). 

2,4,4,5-Tetramethyl-l,4-dihydro-2//-naphtho[2,3-</l[lr3]oxazine (21a). Obtained as a 

light brown solid in a 25% yield from the reaction of (2-iodophenyl )acetoni tri le and 2-

methyl-3-pentyn-2-ol after purification by column chromatography using 4:1 hexanes/ethyl 

acetate (R/= 0.44): mp 95-97 °C; 'H NMR (CDC13) 8 1.44 (d,J= 5.6 Hz, 3H), 1.75 (s, 3H), 

1.83 (s, 3H), 2.73 (s, 3H), 4.30 (br s, IH), 4.92 (q, /= 5.6 Hz, IH), 6.89 (s, IH), 7.24-7.28 

(m, IH), 7.32-7.36 (m, IH), 7.55 (d, J = 8.4 Hz, IH), 7.92 (d, J = 8.4 Hz, IH); 13C NMR 

(CDCI3) 8 17.7, 21.8, 28.4, 30.2, 73.3,76.2, 109.9, 122.7,123.9, 125.7, 126.1, 128.6, 130.5, 

133.0, 140.7 (1 sp2 carbon missing due to overlap); IR (neat) 3375, 3056, 2983, 2934, 2875, 

1618 cm"1: HRMS m/z 241.14703 (calcd for Cl6Ht9NO, 241.14666). 

3-£-{l-[2-cyanomethylphenyl]ethylidene}-5-{l-hydroxy-l-methylethyl}-2,2,4-

trimethyl-2,3-dihydrofuran (22). Obtained as a yellow oil in a 26% yield from the reaction 

of (2-iodophenyl)acetonitrile and 2-methyl-3-pentyn-2-ol after purification by column 
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chromatography using 4:1 hexanes/ethyl acetate (R/= 0.26): *H NMR (CDCI3) Ô 1.03 (s, 

3H), 1.40 (s, 6H), 1.57 (s, 3H), 162 (s, 3H), 2.04 (s, 3H), 2.10 (s, 1H), 3.55-3.70 (m, 2H). 

7.16-7.19 (m, 1H), 7.23-7.28 (m, 2H), 7.36-7.38 (m, 1H); l3C NMR (CDC13) 8 10.6, 21.3, 

22.4, 26.1, 26.2,28.7,29.0,70.9, 85.7,104.3, 116.5,118.2, 127.3, 127.8, 128.0, 128.2, 130.1, 

144.1, 161.9; IR (neat) 3334, 2978, 2930, 2875, 2253 cm'1; HRMS m/z 311.18908 (calcd for 

C20H25NO2, 311.18853). 

2,4,4-Trimethyl-5-phenyl-l,4-dihydro-2//-naphtho[2^-</l[lr3]oxazine (21b). 

Obtained as a white solid in a 50% yield from the reaction (conducted at 130 °C) of (2-

iodophenyl)acetonitrile and 2-methyl-4-phenyl-3-butyn-2-ol after purification by column 

chromatography using 4:1 hexanes/ethyl acetate: mp 179-180 °C (EtOH); lH NMR (CDCI3) 

8 1.22 (s, 3H), 1.44 (d, J = 5.4 Hz, 3H), 1.54 (s, 3H), 4.43 (br s, 1H), 5.07 (q, / = 5.4 Hz, 

1H), 6.86 (d, J = 8.7 Hz, 1H), 6.97-7.02 (m, 2H), 7.25-7.32 (m, 3H), 7.43-7.46 (m, 3H), 7.55 

(d, 7=8.1 Hz, 1H); l3C NMR (CDC13) 8 16.4, 22.2, 29.6,30.4,73.5, 110.4, 122.3, 125.1, 

125.8, 126.9,127.3, 127.4, 127.6, 130.9, 132.4, 132.9, 137.2, 140.2, 140.3; IR (neat) 3398, 

3062, 3026, 2982,2931, 1618 cm1; HRMS m/z 303.16293 (calcd for C2iH2lNO, 303.16231). 

4,4-Dimethyl-5-phenyl-2-n-propyl-l,4-dIhydro-2£f-naphtho[213-d][13]oxazine (21c). 

Obtained as a light yellow solid in a 38% yield from the reaction of (2-iodophenyl)-

acetonitrile, 2-methyl-4-phenyl-3-butyn-2-ol and /1-BU3N after purification by column 

chromatography using 4:1 hexanes/ethyl acetate: mp 142-144 °C (EtOH); lH NMR (CDCI3) 

8 1.00 (t, / = 7.4 Hz, 3H), 1.21 (s, 3H), 1.52 (s, 3H), 1.46-1.73 (m, 4H), 4.41 (br s, 1H), 4.87 

(m, 1H), 6.85 (d, /= 8.4 Hz, 1H), 6.97-7.02 (m, 2H), 7.24-7.32 (m, 3H), 7.42-7.46 (m, 3H), 

7.55 (d, /= 8.0 Hz, 1H); 13C NMR (CDC13) 8 14.0, 17.7, 29.5, 30.4, 37.9, 76.2, 110.4,122.3, 

125.1, 125.8, 126.9, 127.3, 127.4,127.5, 128.9, 130.1,130.9, 132.4, 132.9, 137.1, 140.2, 

140.5; IR (neat) 3381, 3057,3021, 2969, 2933, 2871,1619 cm '; HRMS m/z 331.19399 

(calcd for C23H25NO, 331.19361). 
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CHAPTER 3. SYNTHESIS OF BENZOCYCLIC KETONES AND 

CYCLOPENTENONES VIA Pd-CATALYZED CYCLIZATION OF 

ti>(2-IODOARYL)ALKANENITRILES AND RELATED COMPOUNDS 

A paper to be submitted to the Journal of Organic Chemistry 

Alexandre A. Pletnev and Richard C. Larock 

Department of Chemistry, Iowa State University, Ames. Iowa 50011 

Abstract 

An efficient procedure for the synthesis of 2,2-disubstituted benzocyclic ketones by 

intramolecular carbopalladation of nitrites has been developed. The cyclization of 

substituted 3-(2-iodoaryl)propanenitriles affords indanones in high yields. The reaction is 

compatible with a wide variety of functional groups. This methodology has been extended to 

the synthesis of tetralones and cyclopentenones. 

Introduction 

Benzocyclic ketones are versatile and useful synthetic intermediates in the agrochemical 

and pharmaceutical industries.1 The 2-alkyl-1 -indanone core is prominently featured in 

many pharmaceutical products, such as the antihypertensive drug (+)-Indacrinone, the 

diuretic MK473, and the ^-blocker Spirendolol.'1 Some indanone derivatives also exhibit 

bronchodilatory activity.2 Indanones serve as important building blocks in the synthesis of 

steroids, gibberellic acid, fredericamycin A, and other natural products,2"3 and are frequently 

used as precursors to medicinal substances, such as non-steroidal 5a-reductase inhibitors, 5-

hydroxytryptamine-receptor agonists, dopamine-receptor antagonists and other agents against 

Alzheimer's disease.4 
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a-Tetralones have been used as precursors to chiral benzocyclic amines that provide key 

intermediates for a number of pharmaceutical preparations with neurotropic and psychotropic 

activity.1** Other biologically active substances synthesized from tetralones include lignans 

(such as podophyllotoxin and Justicidins A-F) and diterpenes (heliosporin E and the aglycon 

moiety of various pseudopterosins),5 antitumor and antileukemic HTV reverse transcriptase-

inhibiting benzo[c]phenanthridine alkaloids,6 angucyclin antibiotics,7 anthracyclins, 

tetracyclins and estrone derivatives.8 

Traditionally, benzocyclic ketones have been synthesized by the intramolecular Friedel-

Crafts acylation of P-arylpropionic and y-arylbutyric acids and their derivatives.63'9 The need 

for strongly acidic conditions required by this method, especially when the aromatic ring is 

deactivated, restricts the variety of functional groups that are tolerated. There can also be 

problems with the regioselectivity of the cyclization. Intermolecular routes to benzocyclic 

ketones include the Vilsmeier-Haack cyclization of substituted styrenes,lc the tandem 

Knoevenagel condensation-cycloaddition,31 the Wittig-Homer reaction of phthalide-3-

phosphonates and ketones,36 and various carbonylation processes.10 Complex benzocyclic 

ketones may be synthesized by derivatization of simple indanones and tetralones, but this 

approach often suffers from poor yields.11 Specific indanone targets have also been prepared 

via indirect, highly specific routes.812 

In a continuation of our work on developing useful, new synthetic organic methodology 

based on the carbopalladation of nitriles,13 we decided to explore the possibility of 

synthesizing indanones by the Pd-catalyzed cyclization of 3-(2-iodoaryl)propanenitriles (eq 

I).14 Here, we wish to report the full details of our investigation of the scope and limitations 

of this process, which has been found to afford 2,2-disubstituted benzocyclic ketones in high 

yields. 

_ . O 
CN cat Pd(0) =i 

DMF-H20 (j>Ra (1) 
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Results and Discussion 

2,2-Dimethyl-3-(2-iodophenyl)propanenitrile (la, R',R: = Me, n = 1, eq 2) was chosen as 

the model system for the cyclization. We began the optimization work by first attempting to 

apply our previous carbopalladation reaction conditions (Table 1, entry l).13 The target, 2,2-

dimethyl-1 -indanone (2a), was formed in a moderate yield accompanied by a considerable 

amount of unreacted la even after a long reaction time. 

GC?"' -S3- C&: • «> 
~n p2 v v'n n R' 

I II 

We then turned our attention to a catalytic system consisting of Pd(OAch and PPh3,15 and 

also employed 1.2 equivs of triethylamine as a base and a possible reducing agent for Pd(II). 

Under these conditions, we detected the formation of two products (eq 2), the target indanone 

I and a minor product II, which apparently resulted from reduction of the carbon-iodine bond 

Table 1. Optimization of the Pd-Catalyzed Cyclization of 2,2-Dimethyl 3 (2 

iodophenyOpropanenitrile (eq 2, it = 1, R*,R2 = Me)" 

entry catalyst phosphine argon 
NEt3 

(equiv) 
time (h) -

% yield6 

I n 

1 10% Pd(dba): - - 1 72 34r 0 

2 10% Pd(OAc); 20% PPh3 + 1.2 10 89d 9 

3 10% Pd(OAc): 20% PPh3 + 1.2 12 88 12 

4 10% Pd(OAc)2 20% PPh3 - 1.2 12 80 9 

5 10% Pd(OAc)2 20% PPh3 + 1 12 60 10 

6 10% Pd(OAc)2 20% PPh3 - 1 12 72 12 

" All reactions were run at 130 °C in 9:1 DMF-water. 6 Yields determined by GC-MS and *H NMR spectral 
analysis. r Only 62% conversion of the starting material. d 95% Conversion of the starting material. 
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of the starting material. Such reduction is a well-known process that has been observed in 

many other palladium-catalyzed reactions of organic halides.16 

Since a small amount of the starting material was detected in the reaction mixture after 10 

h (Table 1, entry 2), we allowed the reaction to proceed until all of la was consumed (entry 

3). After 12 h, the reaction was complete and the results were comparable to those reported 

in entry 1. It was also established that an inert atmosphere is not essential for the success of 

the cyclization as the target product was obtained in a high yield when the reaction was 

conducted in air (entry 4). Reducing the amount of triethylamine decreased the yield of the 

indanone (entries 5 and 6). Based on the results of our optimization, the following reaction 

conditions were adopted as the general procedure for the palladium-catalyzed cyclization of 

3-(2-iodoaryl)propanenitriles:17 0.25 mmol of the substrate, 10 mol % Pd(OAc)z, 20 mol % 

PPh3, and 1.2 equiv of NEt3 in 5 mL of a 9:1 DMF-water mixture are stirred at 130 °C under 

AT until consumption of the starting material is complete. 

We propose the following mechanism for this cyclization (Scheme 1). Oxidative 

addition of the aryl iodide to a Pd(0) species, produced by reduction of Pd(OAc)z, leads to 

the arylpalladium intermediate A. Intramolecular addition of the arylpalladium species 

across the cyano group in A affords an iminopalladium intermediate, which is then 

hydrolyzed to the corresponding indanone I. The Pd(II) species is then reduced again to 

Pd(0), which returns to the catalytic cycle. Alternatively, the arylpalladium intermediate A 

Scheme 1 

NPdX 
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may undergo a reduction process, which results in the formation of the byproduct II. The 

exact mechanism of this reduction, as well as the identity of the reducing agent, is unknown 

at this time (vide infra). 

Having established a procedure for the cyclization, we synthesized a variety of 

substituted 3-(2-iodoaryl)propanenitriles in order to investigate the scope and limitations of 

our methodology. One of the advantages of this process is in fact the ease of preparation of 

the starting materials from commercially available precursors. Thus, a number of 

alkanenitriles were alkylated with 2-iodobenzyl bromide to produce representative substrates 

la-i (eq 3). A similar procedure utilizing the ability of the cyano group to stabilize the 

neighboring carbanion was the key step in the preparation of 3-(2-iodophenyl)propanenitriles 

functionalized at the benzylic position (lj-n, Scheme 2). 

1a Me Me 
I b "(CHg);-
1c -(CH2)3-
1d -(CH2)2-
1e Me Ph 
If Ph Ph 
1g H Et 
1h Me C02Me 
II Me CN 

3-(2-Iodoaryl)propanenitriles lo-q were prepared via alkylation of the appropriate 

alkanenitriles with substituted 2-iodobenzylic bromides derived from the corresponding o-

iodobenzylic alcohols as shown in Schemes 3 and 4. A different approach was implemented 

for the synthesis of electron-poor substrates lr and Is, which were obtained from nitration of 

the parent compound la (Scheme 5). Compound lr was further transformed into 3-(2-iodo-

4-cyanophenyl)-2,2-dimethylpropanenitriIe (It) by a reduction-Sandmeyer reaction 

sequence. 
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,CN 1 - LDA 

^.CHO 
2- (X, /TMSC' 

1. LDA 

aC02CHg 

I 

1n 

Scheme 2 
OTMS 

CÇÈ 
11 

TBAF 

CN 

1. NaH 
2. CHgl 

AcgO. NEt3, 
DMAP 

OAc 

11 
OX 

1m 

Scheme 3 

-3- "6°Y<V^0H 

MeCT^ MeCT^N MeC^^I  

p 
1O R = Me 

^JUL, CN A = Ph 

(a) CF3COOAg, l2, CH2CI2, r.t.; (b) CBr4, PPh3, CH2CI2,0 °C; (c) alkylation of isobutyronitrile 
or diphenytacetonitriie. 

Scheme 4 

X C X C " - " X C - - X C T  
iq 

(a) BH3*SMe2, THF, 0 °C to r.L; (b) CBr4, PPh3, CH2CI2,0 °C; (c) alkylation of isobutyronitrile. 
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Scheme 5 

HN03 

O2N 
+ other isomers 

1r 1s 

SnCI2, AcOH 

H2N 
CN 2. CuCN, 

NaCN 1t 

With various 3-(2-iodoaryl)propanenitriles 1 in hand, we explored the scope and 

limitations of their palladium-catalyzed cyclization to indanones. The results of this study 

are presented in Table 2. In most cases, the corresponding indanones were obtained in very 

good yields. As we observed during the optimization studies with la (entry I), minor 

amounts of reduction byproducts were often formed in the cyclization of other 2,2-

disubstituted 3-(2-iodoaryl)propanenitriles. Given the small scale on which this reaction has 

usually been run, it has sometimes proven difficult to separate the two products by column 

chromatography, so the yields of all known products were determined by analysis of the GC-

MS and H NMR spectral data obtained from the reaction mixtures. Several of the reactions 

were also performed on a larger scale and the isolated yields of the products were found to be 

consistent with the yields that were determined spectroscopically. 

As expected, cycloalkanecarbonitriles lb and lc underwent successful cyclization and 

afforded spirocyclic indanones 2b and 2c, the skeletons of which are related to several 

pharmaceutical and biologically active substances (Table 2, entries 2 and 3).laJb,4a 2-Methyl-

2-phenyl-l-indanone (2e) and 2,2-diphenyl-l-indanone (2f) were obtained in high yields 

(entries 4 and 5) despite our concern that organopalladium species A (Scheme 1), derived 

from 2-aryl-3-(2-iodophenyl)propanenitriles, might undergo intramolecular attack on the aryl 

substituent, resulting in the formation of a dihydrophenanthrene derivative.18 Cyclization of 

the secondary nitrile lg resulted in only a modest yield of the target, 2-monosubstituted 

indanone 2g, with the major product being the dehalogenated starting material (entry 6). This 

represents a limitation of the current protocol (see discussion below). However, this 
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Table 2. Synthesis of Indanones by the Pd-Catalyzed Cyclization of 3-(2-Iodoaryl)-

propanenitriles (eq 2, zi = 1)° 

entry nitrile time 
(h) indanone (I) 

% yield" 

I II 

GC£ 
1a 

CC£  ̂
lb 

CN 

1c 

CN 

Ph 
1e 

Ph 
Ph if 

OX 1fl 

(T^R' CN 

^^^C02Me 

0%, 

1h 

12 

12 

12 

12 

15 

12 

12 

12 

1i 

2a 

2b 

2c 

Ph 
2e 

Ph 
Ph 

2f 

2g 

C02Me 
2h 

88 12 

86 8 

83r 17 

82 

92 

30 50 

78,73c trace 

89r 0 
CN 

21 
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Table 2. (continued) 

entry nitrile 
time 
(h) indanone (I) 

% yield 

I II 

10 

11 

12 

13 

14 

15 

16 

O in 

CC% 
OSiMe 3 -j j 

CC£ 
OH 1k 

OCX 
OMe 1| 

GX 
OAc 1m 

MeO^^^I 
CN 

MeO 1o 

Me°Y^V'1 cn 

MeO 
Ph ip 

JXX 
iq 

15 

15 

12 

36 

40 

29 

18 

15 

MeO 

MeO 

MeO 

MeO 

Br 

O 2n 

0 

OH 2k 

O 

OH 2k 

O 

OMe 21 

O 

OAc 2m 

O 

83 

80 trace 

80 

77(79) 19(19) 

80f' 14 

75r trace 

2o 

Ph 84r 0 
Ph 

2p 

64(68)c/ trace 

2q 
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Table 2. (continued) 

time % y*"' 
entry nitrile ^ indanone (I) 

II 

43 48 

35 64 

0 98 

0 99 

56 24 

" See the Experimental Section for the reaction conditions. 6 Yields determined by *H NMR spectral analysis 
unless specified otherwise. Yields in parentheses are corrected for unreacted starting material. r Isolated yield. 
d 97% Conversion of the starting material. ' 87% Conversion after 36 h. 1 Approximately 5% of the starting 
material and 3% of 2.2-dimethylindanone were also isolated. 

limitation can be overcome by the decarboalkoxylation of l-indanone-2-carboxylate esters,193 

such as 2h, which is readily prepared from methyl 2-cyano-3-(2-iodophenyl)-2-

methylpropanoate (lh) using our cyclization procedure (entry 7). Another a-functionalized 

propanenitrile, li, also cyclized efficiently and afforded indanone 2i without formation of the 

reduction byproduct (entry 8). 

The cyclization has been found to tolerate a wide variety of functional groups (entries 7-

18). 1,3-Indandione derivatives 2k-n were readily obtained from fi-functionalized 3-(2-

iodoaryOpropanenitriles lj-n containing keto, hydroxy, ether and ester groups (entries 9-13). 

Only the trimethylsilyloxy group of lj did not survive the cyclization conditions, affording 
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instead the deprotected hydroxyindanone 2k (entry 10). Since the silyl derivative of 2k was 

never detected in the reaction mixture during GC-MS monitoring, it appears that lj 

underwent deprotection before engaging in the palladium-catalyzed cyclization, either due to 

the ease of desilylation under our reaction conditions or because the bulk of the trimethylsilyl 

group inhibited the oxidative addition of lj to the Pd(0) catalyst. The long reaction times 

reported in entries 12 and 13 are probably caused by intramolecular chelation of the methoxy 

and acetoxy groups to the palladium moiety in the arylpalladium intermediates produced 

from 11 and lm. 

Substituents on the arene ring appear to have a pronounced effect on the success of the 

carbopalladation. The electron-rich substrates lo and lp easily produced the corresponding 

indanones 2o and 2p (entries 14 and 15), although these two reactions required longer 

reaction times than those of the parent systems, most probably due to the more sluggish 

oxidative addition of lo and lp to the Pd(0) catalyst. The slightly electron-deficient lq 

afforded only a modest yield of 5-bromo-2,2-dimethyl-l -indanone (2q), demonstrating the 

chemoselectivity of our procedure and resulting in an aryl bromide poised for other 

palladium-catalyzed processes. Strong electron-withdrawing groups, on the other hand, 

inhibited the carbopalladation considerably, making reduction of the arylpalladium 

intermediate the predominant reaction (entries 17-19). As we have proposed previously,14'20 

the palladium center in intermediate A (Scheme 1) must have sufficient electron density to be 

able to add to the carbon-nitrogen triple bond. Obviously, the nucleophilicity of the 

arylpalladium species suffers with the introduction of electron-withdrawing groups on the 

arene ring. We have found that the yields of the corresponding indanones decrease with the 

increase in electron-withdrawing ability of the substituent in the aromatic ring of the 3-(2-

iodoaryOpropanenitrile as quantified by the Hammett parameter <r (entries 17-19)."' 

Heterocyclic 3-(2-haloaryl)propanenitrile 3 also failed to furnish any cyclization product, 

probably because of the electron-poor nature of the pyridine system (entry 20). 

9-Fluorenone (5) was obtained in a 56% yield from 2-cyano-2' -iodobiphenyl (4) in what 

we believe to be the first example of the addition of an arylpalladium to an arenenitrile (entry 

21). The modest yield is most probably caused by steric factors that hinder coordination of 

the arylpalladium to the carbon-nitrogen triple bond prior to the carbopalladation step. 
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The low yield and the considerable amount of reduction byproduct in the cyclization of 2-

(2-iodobenzyl)butanenitrile (lg, Table 2, entry 6) prompted us to look closer at our proposed 

mechanism (Scheme 1). The oxidative addition of lg to the Pd(0) catalyst is evidently 

successful, but the intermediate A is apparently reduced faster than it cyclizes. Presumably, 

intermediate A adopts a conformation where the palladium center is oriented towards the 

smallest substituent on the a-carbon of the nitrile. In tertiary nitriles, the smallest substituent 

on the a-carbon of the nitrile is the cyano group itself, so the conformation of A is close to 

the one shown in Scheme 1, which is favorable for the cyclization. However, when formed 

from secondary nitriles like lg, intermediate A prefers the conformation shown in Scheme 6, 

where the palladium is oriented towards the hydrogen, which is now the smallest group on 

the a-carbon of the nitrile. Obviously, the cyano group in such a conformation is too far 

away from the palladium for successful intramolecular attack, and A is eventually reduced to 

the byproduct II (route a, Scheme 6). 

We also considered the possibility that the a-hydrogen plays a more active role in the 

reduction (route b). It seemed conceivable that the palladium species A could insert into the 

activated a-C-H bond of the alkanenitrile and then migrate to the a-position and furnish 

intermediate B, which could later be reduced or hydrolyzed. This would account for the 

reduction of the original carbon-iodine bond in lg. However, such a mechanism is not 

possible for the tertiary nitriles lr and Is, where the reduction predominates (Table 2, entries 

18 and 19). To test this idea, we prepared an a-deuterated version of lg and carried out the 

cyclization under our standard conditions. No deuterium incorporation into the benzene ring 

Scheme 6 

OCT™ CÇ4. _ oçr 
A  N " 1 /  B  

route R f M or 

ccr 
II 
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was observed in the reduction product, nor was any of the deuterium label lost from the ex­

position of the nitrile. These results strongly discount the likelihood of route b (Scheme 6). 

Using the cyclization of 2-(2-iodobenzyl)butanenitrile as a model system, we attempted 

to find reaction conditions that would substantially increase the yield of the 2-

monosubstituted indanone (Table 3). Different phosphine ligands were tried in order to 

stabilize the arylpalladium intermediate A (Scheme 1) or make it more nucleophilic, thus 

promoting its attack on the cyano group. However, no improvement over the use of PPh; 

was observed (entries 1-14). Omitting the phosphine altogether resulted in a significant 

increase in the reaction time, but failed to improve the indanone-to-byproduct ratio (entry 

15). Using tricyclohexylphosphine, which was employed by Yamamoto in a mechanistically 

similar intramolecular addition of an arylpalladium intermediate to ketones,16® with several 

organic and inorganic bases was also explored to no avail (entries 16-20). Especially 

surprising was the almost complete absence of the cyclization product in reactions using 

NaiCOs and NaOAc since these were the bases used successfully by Yamamoto for the 

ketone cyclization. Two other Pd catalysts gave poorer results than did Pd(OAc): (entries 21 

and 22). No advantage was obtained when we tried using a chloride source (entries 23 and 

24). 

Since alkylamine bases having a-C-H bonds can be a source of reduction of the Pd(H) 

intermediates,22 we decided to explore different organic bases (entries 25-31). First, we 

reduced the amount of triethylamine in hopes that this would lead to a decrease in the amount 

of the reduction byproduct, but the only result of this modification was an increase in the 

reaction time (entry 25). Using diisopropylamine, which has fewer a-C-H bonds than EtgN 

and therefore can be expected to be less reducing, seemed to improve the indanone-to-

byproduct ratio. However, the overall yield of 2g remained unsatisfactory (entry 26). The 

use of several other amines with no a-hydrogens, as well as (-PriNEt, only led to an increase 

in the amount of reduction (entries 27-30). From these results, it appears that our standard 

base of choice, triethylamine, may not be responsible for reduction of the arylpalladium 

intermediate A (Scheme 6). 

Finally, we considered the possibility that A may be reduced by formate anion,23 formed 

under our reaction conditions from DMF and water. Reactions run in the absence of water 
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Table 3. Optimization of the Pd-Catalyzed Cyclization of 2-(2-Iodobenzyl)butanenitrile 

(eq 2, zi = 1, R1 = H, R: = Et)a 

% yield 

entry (i^moHfc) phosphine or arsine base (equiv) (GC ratio 1/11) 

I II 

1 Pd(OAc)2 20% PPh3 NEt3 (1.2) 30 50 

2 Pd(OAc)2 20% P(o-Tol)3 NEt3 (1.2) 30 49 

3 Pd(OAc): 20% AsPh3 NEt3 (1.2) 14 51 

4 Pd(OAc): 20% P(2-furyl)3 NEt3 (1.2) (1:9.3)° 

5 Pd(OAc)2 20% dppf NEt3 (1.2) 22d 39 

6 Pd(OAc)2 10% dppf NEt3 (1.2) 24 38 

7 Pd(OAc)2 10% dppe NEt3(1.2) 16 55 

8 Pd(OAc)2 20% dppe NEt3 (1.2) 23 58 

9 Pd(OAc)2 20% BINAP NEt3 (1.2) 20 40 

10 Pd(OAc)2 20% dppp NEt3 (1.2) 10 55 

11 Pd(OAc)2 20% TPPTS' NEtj (1.2) 16 57 

12 Pd(OAc)2 20%TTMPP/r NEt3 (1.2) (1:1.8) 

13 Pd(OAc)2 20% (di-f-butyl-
phosphino)ferrocene 

NEt3 (1.2) 32 44 

14 Pd(OAc)2 20% 2-(di-f-butyl-
phosphino)biphenyl 

NEt3 ( 1.2) 16 23 

15 Pd(OAc)2 - NEt3 (1.2) (1:2.2)* 

16 Pd(OAc)2 20% PCy3 NEt3 (1.2) 27 69 

17 Pd(OAc)2 20% PCy3 pyridine (1.2) 26 51r 

18 Pd(OAc)2 20% PCy3 2,6-di-/-butyl-4-
methylpyridine (1.2) 

10 67c 

19 Pd(OAc)2 20% PC y 3 Na2CQ3 (2) 0 34 

20 Pd(OAc)2 20% PCy3 NaOAc (2) trace 34 

21 PdCl2 20% PPh3 NEt3 (1.2) 15 55 
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Table 3. (continued) 

entry 
catalyst 

(10 mol %) 
phosphine or arsine base (equiv) 

% yield 
(GC ratio I/H)6 

entry 
catalyst 

(10 mol %) 
phosphine or arsine base (equiv) 

I II 

22 PdCl2(PPh3)2 - NEt3 (1.2) 17 58 

23 Pd(OAc): 20% PPh3 NEt3 (1.2) 20Z| 54 

24 Pd(OAc), 20% PPh3 NEt3 (1.2) 7 80 

25 Pd(OAc), 20% PPh3 NEt3 (0.5) 24 33 

26 Pd(OAc): 20% PPh3 z-Pr2NH (1.2) 48 51 

27 Pd(OAc): 20% PPh3 
2,2,6,6-tetramethyl-

piperidine (1.2) 
(1:4.8)' 

28 Pd(OAc)i 20% PPh3 Ph2NH (1.2) 16' 77 

29 Pd(OAc), 20% PPh3 NPh3 (1.2) 12"' 79 

30 Pd(OAc), 20% PPh3 i- Pr2NEt (1.2) 9 53 

31 Pd(OAc): 20% PPh3 pyridine (1.2) 29 38c 

32 Pd(OAc), 20% PPh3 NEt3 (1.2) trace"" 48 

33 Pd(OAc): 20% PPh3 NPh3 (1.2) trace",p 11 

34 Pd(OAc), 20% PPh3 NEt3 (1.2) 31' 24 

" All reactions were run at 130 °C under Ar in 9:1 DMF-water unless specified otherwise. 6 All yields have 
been determined by lH NMR spectral analysis whenever practical. GC ratios were obtained straight from the 
reaction mixtures. c The reaction time was 36 h. J The same result was obtained at 100 °C. ' TPPTS = tris(3-
sulfonatophenyOphosphine. sodium salt. /TTMPP = tris(2.4.6-trimethoxyphenyl)phosphine. * The reaction 
time was 84 h. * 1 Equiv of/z-Bu^NCl was employed in the reaction. ' 1 Equiv of LiCl was employed in the 
reaction. ' The reaction time was 24 h. * Low conversion after 12 h. ' The reaction time was 48 h. ™ The 
reaction time was 29 h. " This reaction was run for 7 days in dry DMA. ° 76% Conversion of the starting 
material. " 12% Conversion of the starting material. q This reaction was run for 5 days in 9:1 DMA-water; 85% 
conversion of the starting material. 

using DMA as a solvent were extremely slow and produced only traces of the desired 

compound 2g (entries 32 and 33). A reaction using a 9:1 DMA-water mixture required an 

unreasonably long time and afforded 2g in only a very modest yield (entry 34). Even though 

not using DMF seemed to somewhat suppress the reduction (entries 32-34), the formation of 

the reduced starting material indicated the presence of another reducing agent, the identity of 

which remains unknown. The role of DMF was further discounted when we found no 
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deuterium incorporation into the reduction byproduct after the reaction was conducted in a 

mixture of DMF-d? and DiO. 

An interesting process was observed in the attempted cyclization of l-(2-

iodobenzyl)cyclopropanecarbonitrile (Id). Instead of the expected spirocyclic indanone, this 

reaction produced 2-cyano-3,4-dihydronaphthalene (6) in a 58% yield (eq 4). The identity of 

the product was confirmed by synthesizing it independently from 3-tetralone and TMSCN. 

Evidently, instead of attacking the cyano group, the arylpalladium intermediate formed from 

Id induces cyclopropane ring-opening perhaps by a process like that illustrated in Scheme 7. 

Examples of such ring-opening are well documented in cases where it leads to stable 7t-

allylpalladium complexes.24 In our case, the process is probably driven by the eventual 

formation of a conjugated system. 

Scheme 7. Proposed mechanism for the formation of 6 

X 

PdX 
CN . HPdX 

6 

Encouraged by the success of the cyclization of 2,2-disubstituted 3-(2-iodoaryl)-

propanenitriles, we decided to investigate the possibility of synthesizing benzocyclic ketones 

other than indanones. The starting materials for the six- and seven-membered ring 

cyclization were prepared from commercially available 2-iodophenylacetic acid as shown in 

Scheme 8, and introduced into the reaction under our standard conditions. 

Subsequent cyclization proceeded in reasonable yields. Thus, 4-(2-iodophenyl)-2,2-

dimethylbutanenitrile (7a) afforded tetralone 9a in a 69% yield (Table 4, entry 1). 
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Scheme 8 

COOH a 

COOH 

- C C  

7a R = Me 
7b R = Ph 

CN 7c R = -(CH2)S-

(a) BH3
,SMe2, THF, 0 °C to r.t.; (b) MsCI, Et3N, CH2CI2i 0 °C to r.L; (c) Nal, acetone, reflux; 

(d) alkylation of corresponding alkanenitrile; (e) KCN, 18-crown-6. acetone, reflux; (f) aq KOH, reflux; 
then H3O*. 

Table 4. Synthesis of Tetralones and a Benzosuberone by the Pd-Catalyzed Cyclization 

of o>(2-Iodophenyl)alkanenitriles (eq 2f 

. .. time benzocyclic ketone 
entry mtnle ^ 

% yield" 

i n 

CN 

7a 

CN 

CN 

7c 

Ph Ph 7b 

24 fT ^— 69 16 

24 iT>r X^Ph 55r 18 

24 64 15 

7c 

.  ̂ $N 36 fT^r " 41 45 

" See the Experimental Section for the reaction conditions. 6 All yields were determined by *H NMR spectral 
analysis unless specified otherwise. r Isolated yield. 
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Cyclization of other 4-(2-iodophenyl)butanenitriles was also reasonably successful (entries 2 

and 3). Surprisingly, even 5-(2-iodophenyl)pentanenitrile (8) cyclized to produce a 

benzosuberone derivative 10 (entry 4). The efficacy of this six- and seven-membered ring 

formation is remarkable considering that the greater conformational flexibility present in 

these longer-chain substrates must significantly reduce the likelihood of achieving the 

conformation necessary for intramolecular addition of the arylpalladium species to the cyano 

group. This difficulty in achieving the favorable conformation is undoubtedly responsible 

for the increased reaction times compared to the five-membered ring cyclizations. 

We have also extended the scope of this methodology to the synthesis of cyclopentenones 

(eq 5). Cyclopentenones are common carbon skeletal structures in many natural products, 

such as jasmonates, muscones, rethrolones, prostaglandins, etc.25 They are also important in 

the pharmaceutical industry as many exhibit very useful biological activity, including 

antitumor, antiviral and antimicrobial properties.26 Traditional routes to cyclopentenones 

include the Dieckmann condensation of 1,4-diketones,27 the Nazarov cyclization,25^28 the 

Pauson-Khand reaction29 and other variations of carbonylative cycloaddition processes.26bJO 

Many of these methods, however, suffer from the use of strongly acidic or basic conditions 

or sensitive organometallic reagents, often in stoichiometric amounts. 

For our studies, we synthesized a variety of substituted 5-iodopent-4-enenitriles 11 as 

shown in Scheme 9. Copper-catalyzed addition of Grignard reagents to the appropriate 

propargylic alcohols, followed by quenching with iodine and conversion of the resulting 

allylic alcohols, provided allylic bromides that were used in the alkylation of isobutyronitrile 

to afford 4-substituted vinylic substrates lia d Compounds lie and llf were made via a 

similar route starting with reduction of the corresponding propargylic alcohols with Red-Al. 

(5) 
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Scheme 9 

11a R1 = Ph, R2 = Ph 
11b R1 = Ph, R2 = Me 
11c R1 = Me, R2 = Ph 

_ OH a d.b ,f' _c f' CN 

MEAS' _ PX0" PX"' PXV 
11d 

^ XCH — XER  ̂RXX 
11e R = Me 
11f R = Ph 

(a) PhMgBr or CH3MgBr, cat. Cul, THF, 0 °C; then l2, -78 °C to r.t.; (b) CBr4, PPh3, CH2CI2, 0 °C; 
(c) alkylation of isobutyronitrile; (d) CH3ONa, methanol, reflux; (e) Red-AI, THF, 0 °C; then l2, -78 °C 
to r.t. 

Cyclization of the 4,5-disubstituted 5-iodo-2,2-dimethylpent-4-enenitriles lla-c proved 

successful as highly substituted cyclopentenones 12a-c were obtained in very good yields 

(Table 5, entries 1-3). In contrast with the benzocyclic ketone synthesis (eq 2), none of the 

reduction byproduct was detected in the reaction mixtures. 5,5-Dimethyl-3-phenyl-

cyclopentenone (12d) was prepared from lid in a 67% yield (entry 4). Substrates lie and 

llf failed to give rise to their expected cyclization products (entries 5 and 6). The major 

product of the attempted cyclization of llf was identified from GC-MS analysis as 2,2-

dimethyl-5-phenylpent-4-ynenitrile, which probably arose from llf by base-promoted 

dehydroiodination.19b 

Since reduction of the carbon-iodine bond of the vinylic substrates 11 was not observed, 

we prepared the secondary nitrile 13 and subjected it to our standard cyclization conditions. 

The 5-monosubstituted cyclopentenone 14 was obtained in a 63% isolated yield (entry 7). 

Even though the reduction byproduct corresponding to II in eq 2 was formed in about 5% 

yield (as determined by analysis of the GC-MS data obtained from the reaction mixture), this 

problem does not appear to present any significant limitations for the synthesis of 5-

monosubstituted cyclopentenones. 
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Table 5. Synthesis of Cyclopentenones by the Pd-Catalyzed Cyclization of 5-Iodopent-

4-enenitriles (eq 5)" 

entry nitrile time (h) cyclopentenone % yield6 

1 
A CN 

12 & 94 

2 
CN 

12 

D & 72 

3 J CN 
12 

ME^ 

PH 
& 82 

4 J CN 
12 J & 67R 

5 "1 /L CN 
12 - 0 

6 
CN 

12 - 0 

7 
Ph^x '' CN 

13 
12 "J & y 

14 

63D 

" See the Experimental Section for the reaction conditions. 6 Isolated yield unless specified otherwise. c Yield 
determined by 'H NMR spectral analysis. d Accompanied by 5% of the reduced starting material. 

Conclusions 

We have developed a general and efficient method for the synthesis of 2,2-disubstituted 

benzocyclic ketones from co-(2-iodoaryl)alkanenitriles. The procedure affords indanones and 
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tetralones in good to excellent yields and is compatible with a wide variety of functional 

groups. The suitability of this methodology for the preparation of various cyclopentenones 

has also been demonstrated. 

Experimental Section 

General. lH and l3C NMR spectra were recorded at 300 and 75 MHz or 400 and 100 

MHz, respectively. Thin-layer chromatography was performed using commercially prepared 

60-mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm) and basic KMnO* solution [3 g of KMnO* + 20 g of K2CO3 + 

5 mL of NaOH (5%) + 300 mL of H2O]. All melting points are uncorrected. High resolution 

mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector mass 

spectrometer using EI at 70 eV. IR spectra were measured on a Bomem Michelson MB-102 

FT-IR spectrometer. All reagents were used directly as obtained commercially unless 

otherwise noted. Pd(OAc): was donated by Johnson Matthey, Inc. and Kawaken Fine 

Chemicals Co., Ltd. PPh; was also donated by Kawaken Fine Chemicals Co., Ltd. 

Reagents. o-Iodobenzyl bromide was obtained from Lancaster Synthesis Ltd. 

Isobutyronitrile, cyclohexanecarbonitrile, cyclopropanecarbonitrile, cyclobutanecarbonitrile, 

butyronitrile, diphenylacetonitrile, 4,5-dimethoxybenzyI alcohol, o-iodobenzoic acid, 5-

bromo-2-iodobenzoic acid, methyl o-iodobenzoate, 2,2'-diiodobiphenyl, n-butyllithium, 

diisopropylamine and triethylamine were obtained from Aldrich Chemical Co., Inc. (Z)-3-

Bromo-1 -iodo-1,2-diphenylpropene, (Z)-3-bromo- l-iodo-2-methyl-1 -phenylpropene, (Z)-1 -

bromo-3-iodo-2-butene, (Zj-3-bromo-l-iodo-1-phenylpropene, (Zj-3 -bromo-1 -iodo-2-

phenylpropene, (Z>l-bromo-3-iodo-2-phenyl-2-butene,31 as well as 2-iodophenethyl 

mesylate and 2-iodophenethyl iodide,32 were prepared as previously described. 

Synthesis of o>(2-Iodoaryl)alkanenitriles and related starting materials. 

General procedure for the a alkylation of aliphatic nitriles. Compounds la-e, lg, lh, 

lo, Iq, 7a, 7c, 8, lla-f and 13 were prepared by a procedure reported by Taber et al,33 A 

hexane solution of 3.62 mmol of n-BuLi was added to a solution of 3.45 mmol of i-P^NH in 

10 mL of THF at —78 °C under an Ar atmosphere. After 5 min, 3 mmol (9 mmol if not 
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tertiary) of the ni tri le was added (dissolved in THF if the nitrile is a solid). The reaction 

mixture was stirred at -78 °C for 1 h, after which a solution of 3.6 mmol of o-iodobenzyl 

bromide in 4 mL of THF was added at once and the reaction mixture was stirred with 

warming to room temperature for about 1.5 h, then diluted with water and extracted with 

ether. The ethereal extracts were dried with NaiSO.», the solvent was evaporated, and the 

residue was separated by column chromatography on silica gel with a proper eluant. The 

following compounds were prepared using the above procedure: 

3-(2-Iodophenyl)-2,2-dlmethylpropanenitrile (la). Obtained in a 94% yield from the 

alkylation of isobutyronitrile with o-iodobenzyl bromide after column chromatography using 

10:1 hexanes/ethyl acetate: white solid, mp 59-61 °C (hexanes); 'HNMR (CDCI3) Ô 1.43 (s, 

6H), 3.08 (s, 2H), 6.96 (td, 7=7.5, 1.2 Hz, 1H), 7.35 (td, 7=7.5, 1.2 Hz, 1H), 7.51 (dd,/ = 

7.5, 1.5 Hz, 1H), 7.87 (dd, 7 = 7.5, 1.5 Hz, IH); 13C NMR (CDC13) 5 26.6, 34.3,48.7, 102.6, 

124.6, 128.4, 129.0, 130.7, 139.0, 139.9; IR (neat) 3072, 2995, 2928, 2232 cm1; HRMS m/z 

285.00180 (calcd for C,,H12IN, 285.00145). 

l-(2-Iodobenzyl)cyclohexanecarbonitrile (lb). Obtained in a 96% yield from the 

alkylation of cyclohexanecarbonitrile with o-iodobenzyl bromide after column 

chromatography using 10:1 hexanes/ethyl acetate: white solid, mp 58-60 °C (hexanes); H 

NMR (CDCI3) S 1.19-1.22 (m, 1H), 1.45-1.76 (m, 7H), 1.92 (d,/= 11.4 Hz, 2H), 3.08 (s, 

2H), 6.94 (td, /= 7.5, 1.5 Hz, 1H), 7.33 (td, 7=7.5, 1.5 Hz, 1H), 7.51 (dd, /= 7.5, 1.5 Hz, 

1H), 7.85 (dd, 7 =7.5, 1.5 Hz, 1H); l3C NMR (CDC13) Ô 16.3, 22.9,25.1,35.4,41.0,48.8, 

102.8, 122.9, 128.3, 128.9, 130.9,138.6, 139.8; IR (neat) 3062,2935, 2860, 2228 cm1; 

HRMS m/z 325.03330 (calcd for C14Hl6IN, 325.03275). 

l-(2-Iodobenzyl)cyclobutanecarbonitrile (lc). Obtained in a 74% yield from the 

alkylation of cyclobutanecarbonitrile with o-iodobenzyl bromide after column 

chromatography using 10:1 hexanes/ethyl acetate: white solid, mp 29-30 °C (hexanes/ethyl 

acetate); 'H NMR (CDC13) S 2.07-2.20 (m, 2H), 2.25-2.32 (m, 2H), 2.47-2.54 (m, 2H), 3.23 

(s, 2H), 6.96 (td, / = 7.6, 1.6 Hz, 1H), 7.31-7.35 (m, 1H), 7.38-7.41 (m, 1H), 7.86 (dd, / = 

8.0,1.6 Hz, 1H); 13C NMR (CDC13) Ô 17.1,31.7, 36.4,45.9,102.1,124.4, 128.4, 128.8, 

129.7,139.0,139.8; IR (neat) 3059,2991,2946, 2229 cm*1; HRMS m/z 297.00187 (calcd for 

Ci2Hl2IN, 297.00145). 
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1-(2-Iodobenzyl)cyclopropanecarboiiitrile (Id). Obtained as a colorless oil in a 93% 

yield from the alkylation of cyclopropanecarbonitrile with o-iodobenzyl bromide after 

column chromatography using 10:1 hexanes/ethyl acetate: lHNMR (CDCI3) S 1.00-1.03 (m, 

2H), 1.29-1.32 (m, 2H), 3.01 (s, 2H), 6.96 (td, J = 8.0, 1.6 Hz, 1H), 7.35 (td, J = 7.6, 1.2 Hz, 

1H), 7.45 (dd, J = 7.6, 1.6 Hz, 1H), 7.84 (dd, J = 8.0, 1.2 Hz, 1H); l3C NMR (CDC13) 8 9.4, 

13.6,43.5, 101.2, 123.1, 128.5, 128.8, 129.5,139.3, 139.6; IR (neat) 3062, 3010,2928, 2232 

cm1; HRMS m/z 282.98628 (calcd for CnHt0IN, 292.98580). 

3-(2-Iodophenyl)-2-methyl-2-phenylpropanenitrile (le). Obtained as a colorless oil in 

a 78% yield from the alkylation of 2-phenylpropanenitrile with o-iodobenzyl bromide after 

column chromatography using 10:1 hexanes/ethyl acetate: H NMR (CDCI3) 8 1.79 (s, 3H), 

3.32-3.46 (m, 2H), 6.91-6.97 (m, 1H), 7.24-7.27 (m, 2H), 7.33-7.42 (m, 3H), 7.46-7.49 (m, 

2H), 7.84 (dt, 7=8.4,0.6 Hz, 1H); 13C NMR (CDC13) 8 25.5,43.5, 50.7, 103.1, 123.1, 125.9, 

128.0, 128.2, 128.9, 129.1, 130.8, 138.3, 139.7, 139.8; IR (neat) 3067, 3031, 2985, 2928, 

2238 cm*1; HRMS m/z 347.01747 (calcd forCl6Hl4IN, 347.01710). 

2-(2-Iodobenzyl)bulanenitrlle (lg). Obtained as a colorless oil in an 87% yield from 

the alkylation of butyronitrile with o-iodobenzyl bromide after column chromatography using 

10:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.16 (t, / = 7.5 Hz. 3H), 1.71-1.77 (m, 2H), 

2.85-2.98 (m, 1H), 3.01 (d, J = 0.9 Hz, 2H), 6.94-7.00 (m, IH), 7.33 (dd, / = 5.1,0.9 Hz, 

2H), 7.84 (d, J = 7.8 Hz, IH); 13C NMR (CDC13) 8 11.5, 25.4, 33.9,42.7, 100.2, 115.3, 

121.1, 128.6, 129.1, 130.7, 139.7; IR (neat) 3062, 2969, 2933, 2876, 2238 cm1; HRMS m/z 

285.00180 (calcd forCnHl2IN, 285.00145). 

Methyl 2-cyano-3-(2-iodophenyl)-2-methylpropanoale (lh). Obtained in a 40% yield 

from the alkylation of methyl 2-cyanopropanoate with o-iodobenzyl bromide after column 

chromatography using 4:1 hexanes/ethyl acetate: white solid, mp 37-39 °C (hexanes/ethyl 

acetate); 'H NMR (CDC13) 8 1.68 (s, 3H), 3.36-3.46 (m, 2H), 3.82 (s, 3H), 6.98 (td, /= 8.0, 

2.0 Hz, IH), 7.34 (td, J = 7.6, 1.6 Hz, IH), 7.39 (dd, / = 7.6, 1.6 Hz, IH), 7.88 (dd, / = 8.0, 

1.2 Hz, IH); 13C NMR (CDC13) 8 22.9,44.6,45.9, 53.7, 102.2, 119.3, 128.5, 129.4, 130.2, 

137.3, 140.0, 169.1; IR (neat) 3057, 3008, 2955, 2848, 2250, 1745 cm*1; HRMS m/z 

328.99176 (calcd forCi2Hi2IN02,328.99128). 
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3-(2-Iodo-44-diirothoxyphenyl)-2,2-diinethylpropanenitrile (lo). Obtained in a 

100% yield from the alkylation of isobutyronitrile with 2-iodo-4,5-dimethoxybenzyl bromide 

(prepared in two steps from 4,5-dimethoxybenzyl alcohol)34 after column chromatography 

using 2:1 hexanes/ethyl acetate: white solid, mp 67-68 °C (hexanes/ethyl acetate); H NMR 

(CDC13) ô 1.43 (s, 6H), 3.00 (s, 2H), 3.87 (s, 3H), 3.90 (s, 3H), 7.10 (s, 1H), 7.24 (s, IH); ,3C 

NMR (CDCI3) 8 26.3, 34.4, 48.5, 55.8, 55.9, 90.0, 112.8, 121.5, 124.9, 131.4, 148.4, 149.0; 

IR (neat) 2974, 2933, 2840, 2233 cm1; HRMS m/z 345.02315 (calcd forCl3Hl6IN02, 

345.02258). 

3-(5-Bromo-2-iodophenyl)-2,2-dimethylpropanenitrile (lq). Obtained in a 48% yield 

from the alkylation of isobutyronitrile with 5-bromo-2 iodobenzyl bromide (prepared in two 

steps from 5-bromo-2-iodobenzoic acid)32,3lb after column chromatography using 4:1 

hexanes/ethyl acetate: white solid, mp 61-63 °C (hexanes/ethyl acetate); *H NMR (CDCI3) 8 

1.45 (s, 6H), 3.04 (s, 2H), 7.12 (dd, /= 8.4, 2.4 Hz, IH), 7.62 (d, / = 2.4 Hz, IH), 7.72 (d, J 

= 8.4 Hz, IH); 13C NMR (CDC13) 8 26.6, 34.1,48.5, 100.5, 122.7, 124.2, 132.2, 133.5, 141.1 

(I sp2 carbon missing due to overlap); IR (neat) 3072, 2985, 2238 cm'1; HRMS m/z 

362.91250 (calcd for C, ,H, ,INBr, 362.91196). 

4-(2-Iodophenyl)-2^-dimelhylbulanenitrile (7a). Obtained as a colorless oil in a 38% 

yield from the alkylation of isobutyronitrile with 2-iodophenethyl mesylate after column 

chromatography using 10:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.45 (s, 6H), 1.78 (m, 

2H), 2.91 (m, 2H), 6.88-6.94 (m, IH), 7.24-7.30 (m, 2H), 7.80 (dd, 7=8.1, 1.2 Hz, IH); 13C 

NMR (CDCI3) 8 26.5, 32.1, 36.8,41.3, 100.1, 124.7, 128.1, 128.6, 129.5, 139.5, 143.3; IR 

(neat) 3057, 2985, 2933, 2866, 2233 cm"1; HRMS m/z 299.01767 (calcd for Ci2Hl4IN, 

299.01710). 

l-(2-Iodophenethyl)cyclohexanecarbonitrile (7c). Obtained as a colorless oil in a 31% 

yield from the alkylation of cyclohexanecarbonitrile with o-iodophenethyl iodide after 

column chromatography using 10:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.17-1.39 (m, 

2H), 1.60-1.79 (m, 8H), 2.05-2.10 (m, 2H), 2.90-2.95 (m, 2H), 6.87-6.93 (m, IH), 7.22-7.29 

(m, 2H), 7.80 (dd, / = 7.8,0.9 Hz, IH); 13C NMR (CDC13) 8 23.1,25.4,35.5,36.0,38.8, 

40.8,100.1,123.3,128.1,128.6, 129.5,139.5,143.6; IR (neat) 3056, 2938,2856, 2228 cm1; 

HRMS m/z 339.04893 (calcd for Cl5Hi8IN, 339.04840). 
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5-(2-Iodophenyl)-2,2-dimethylpentanenitrile (8). To a solution of 2-iodophenethyl 

mesylate (0.736 g, 2.26 mmol) in 5 mL of MeCN were added KCN (0.9 g, 13.85 mmol) and 

a catalytic amount of 18-crown-6. The reaction mixture was refluxed with stirring for 24 h, 

the amount of solvent was reduced on a rotary evaporator, and the mixture was diluted with 

water and extracted with CH2CI2. The extracts were dried (NaiSO*), evaporated and 

chromatographed using 4:1 hexanes/ethyl acetate to afford a 70% yield of 3-(2-iodo-

phenyOpropanenitrile, which was dissolved in 2 mL of MeOH and added to 1M aq KOH 

solution (15 mL). The mixture was refluxed overnight, cooled, acidified with aq HC1, and 

extracted with ether. Upon evaporation, 3-(2-iodophenyl)propanoic acid was obtained in a 

100% yield. The acid was converted to l-iodo-3-(2-iodophenyl)propane (85% yield),32 and 

the latter was used for the alkylation of isobutyronitrile to afford 8 as a colorless oil in a 72% 

yield after column chromatography using 10:1 hexanes/ethyl acetate: H NMR (CDCI3) § 

1.35 (s, 6H), 1.60-1.64 (m, 2H), 1.76-1.82 (m, 2H), 2.73-2.77 (m, 2H), 6.90 (td, / = 7.6, 1.6 

Hz, 1H), 7.20-7.26 (m, 1H), 7.27-7.31 (m, 1H), 7.82 (dd, J - 8.0, 1.2 Hz, 1H); l3C NMR 

(CDCI3) Ô 25.8, 26.5, 26.6, 32.2,40.4, 100.4,124.9,127.8,128.3, 129.2, 139.4, 143.9; IR 

(neat) 3057, 2985, 2939, 2233 cm1; HRMS m/z 313.03332 (calcd forC,3Ht6IN, 313.03275). 

(£>-5-Iodo-2,2-dimelhyl-43-diphenyl-4-pcnlenenitrile (lia). Obtained in a 61% yield 

from the alkylation of isobutyronitrile with (£)-3-bromo-l-iodo-l,2-diphenylpropene after 

column chromatography using 10:1 hexanes/ethyl acetate: light yellow solid, mp 90-92 °C; 

lH NMR (CDCI3) Ô 1.36 (s, 6H), 3.24 (s, 2H), 7.03-7.11 (m, 10H); ,3C NMR (CDC13) ô 27.3, 

32.4, 53.6, 105.2, 123.8, 127.3, 127.4, 127.6, 128.1, 129.4, 129.6, 138.2,144.1, 144.4; IR 

(neat) 3060, 2976, 2933, 2234 cm1; HRMS m/z 387.04910 (calcd for C19Hl8IN, 387.04840). 

(Z)-5-Iodo-2,2,4-trimethyl-5-phenyl-4-pentenenitriIe (lib). Obtained as a colorless oil 

in a 17% yield from the alkylation of isobutyronitrile with (Z)-3-bromo-l-iodo-2-methyl-l-

phenylpropene after column chromatography using 10:1 hexanes/ethyl acetate: lH NMR 

(CDCb) Ô 1.55 (s, 6H), 1.91 (s, 3H), 2.83 (s, 2H), 7.19-7.26 (m, 3H), 7.31-7.37 (m, 2H); 13C 

NMR (CDCI3) ô 19.9, 27.2, 31.8,53.2,100.9,125.5, 127.8, 128.2,128.4, 138.9,144.7; IR 

(neat) 3063,2982, 2925, 2232,1444 cm*'; HRMS m/z 325.03330 (calcd for C,4H,6IN, 

325.03275). 
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(£)-5-Iodo-2,2-diinethyl-4-phenyl-4-hexenenitrile (11c). Obtained as a colorless oil in 

a 21% yield from the alkylation of isobutyronitrile with (ZJ-1 -bromo-3-iodo-2-pheny 1-2-

butene after column chromatography using 10:1 hexanes/ethyl acetate: *H NMR (CDCI3) S 

1.30 (s, 6H), 2.50 (t, J = 0.8 Hz, 3H), 3.01 (q, 7 = 0.8 Hz, 2H), 7.19-7.22 (m, 2H), 7.32-7.37 

(m, 3H); l3C NMR (CDC13) 8 27.2,32.1, 32.4, 53.9, 103.8, 123.9, 127.9,128.5, 128.7, 137.8, 

141.5; IR (neat) 3057, 2980, 2918, 2233, 1439 cm1; HRMS m/z 325.03330 (calcd for 

CuH.eIN, 325.03275). 

(E>5-Iodo-2,2-dimethyl-4-phenyl-4-penteneiiitrile (lid). Obtained as a yellow oil in a 

36% yield from the alkylation of isobutyronitrile with (Z)-3-bromo-1 -iodo-2-phenylpropene 

after column chromatography using 10:1 hexanes/ethyl acetate: lH NMR (CDCI3) ô 1.32 (s, 

6H), 3.05 (s, 2H), 6.64 (s, IH), 7.32-7.36 (m, 5H); 13C NMR (CDC13) S 27.2, 32.3,46.3, 

84.4, 124.1, 126.9, 128.6, 128.7, 140.6, 147.9; IR (neat) 3057, 2980, 2928, 2232, 1444 cm1; 

HRMS m/z 311.01772 (calcd for C13H,4lN, 311.01710). 

(Z>5-Iodo-2,2-dimethyl-4-hexenenitrile (lie). Obtained as a light yellow oil in a 66% 

yield from the alkylation of isobutyronitrile with (Z)-l-bromo-3-iodo-2-butene after column 

chromatography using 10:1 hexanes/ethyl acetate: H NMR (CDCI3) 5 1.37 (s, 6H), 2.37-

2.39 (m, 2H), 2.58 (dd, J = 2.4, 1.2 Hz, 3H), 5.55-5.60 (m, IH); 13C NMR (CDC13) ô 26.3, 

32.1, 33.9,47.4, 105.4, 124.6, 129.5; IR (neat) 2980,2918, 2238, 1650, 1264 cm"1; HRMS 

m/z 249.00175 (calcd for C8Hl2IN, 249.00145). 

fZ>5-Iodo-2,2-diiiiethyl-5-phenyl-4-pentenenitrile (1 If)- Obtained as a yellow oil in a 

36% yield from the alkylation of isobutyronitrile with (Z)-3-bromo- 1-iodo- 1-phenylpropene 

after column chromatography using 10:1 hexanes/ethyl acetate: lH NMR (CDCI3) 5 1.45 (s, 

6H), 2.61 (d, J = 6.8 Hz, 2H), 6.02 (t, J = 6.8 Hz, 1H), 7.29-7.33 (m, 3H), 7.45-7.48 (m, 2H); 

13C NMR (CDCb) S 26.5, 32.4,48.4,109.4,124.6,128.3, 128.6, 128.7, 132.6, 142.7; IR 

(neat) 3062, 2980, 2933, 2233, 1444 cm*1; HRMS m/z 311.01772 (calcd forC,3H14IN, 

311.01710). 

(£>2-Ethyl-5-iodo-4^-diphenyl-4-pentenenitrile (13). Obtained as a yellow oil in a 

74% yield from the alkylation of butyronitrile with (£)-3-bromo-1 -iodo-1,2-diphenylpropene 

after column chromatography using 10:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.07 (t, J 
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= 7.2 Hz, 3H), 1.69 (quintet, 7 = 7.2 Hz, 2H), 2.48-2.56 (m, 7 = 7.2 Hz, 1H), 3.05-3.10 (m, 

1H), 3.26-3.31 (m, 1H), 6.98-7.14 (m, 10H); l3C NMR (CDC13) ô 11.6, 24.9, 31.5,46.3, 

103.5, 120.9, 127.31, 127.33, 127.6, 128.2,128.9, 129.5, 137.9, 144.0, 144.2; IR (neat) 

3052, 3021, 2969, 2933, 2238, 1440 cm1; HRMS m/z 387.04880 (calcd for Cl9H18IN, 

387.04840). 

3-(2-Iodophenyl)-2,2-diphenylpropaiienltrile (If) was prepared according to the 

procedure of Parham.35 A solution of diphenylacetonitrile (0.97 g, 5.0 mmol) in 2 mL of 

DMF was added to a mixture of NaH (0.144 g, 6.0 mmol), 2 mL of DMF and 1 mL of 

benzene at 0 °C. The reaction mixture was stirred at 0 °C for 30 min, then a solution of o-

iodobenzyl bromide (1.78 g, 6.0 mmol) in 1 mL of DMF was added. The resulting mixture 

was allowed to warm up to room temperature, poured into water and extracted with CHiCh, 

dried over Na2SO.*, evaporated, and recrystallized from ethyl acetate to afford 1.96 g (96%) 

of the desired compound If: white solid, mp 122-123 °C; H NMR (CDCI3) ô 3.89 (s, 2H), 

6.91 (td, 7 = 5.7, 1.2 Hz, IH), 6.98 (dd, 7 = 5.7,1.2 Hz, IH), 7.15 (td, 7=5.7, 1.2 Hz, IH), 

7.32-7.37 (m, 10H), 7.80 (dd, 7 = 5.7, 1.2 Hz, IH); 13C NMR (CDC13) 8 48.4, 52.0, 103.3, 

121.8, 127.6, 127.8, 128.1, 128.7, 129.0, 130.8,137.6, 139.5, 139.7; IR (neat) 3067, 3046, 

3031, 2964, 2938, 2238 cm1; HRMS m/z 409.03323 (calcd forCziHwJN, 409.03275). 

3-(2-Iodo-4,5-dimelhoxyphenyl)-2,2-diphenylpropanenilrile (lp) was prepared 

according to the procedure for If from diphenylacetonitrile and 2-iodo-4,5-dimethoxybenzyl 

bromide (prepared in two steps from 4,5-dimethoxybenzyl alcohol)34,316 in an 81% yield after 

recrystallization from ethyl acetate: white solid, mp 155-156 °C; H NMR (CDCI3) S 3.47 (s, 

3H), 3.81 (s, 3H), 3.84 (s, 2H), 6.24 (s, 1H), 7.19 (s, IH), 7.31-7.40 (m, 10H); l3C NMR 

(CDCh) 8 28.0, 52.2, 55.3, 55.9,91.0, 113.1, 121.4, 121.6, 127.6, 128.0, 128.7, 129.6, 139.6 

(2 sp2 carbons missing due to overlap); IR (neat) 3093, 3062, 3005, 2943,2912, 2840,2248 

cm1; HRMS m/z 469.05450 (calcd for C23H20INO2, 469.05388). 

4-(2-Iodophenyl)-2,2-diphenylbutanenitrile (7b) was prepared in a 90% yield 

according to the procedure for If from diphenylacetonitrile and 2-iodophenethyl iodide: 

white solid, mp 98-99 °C (hexanes/ethyl acetate); H NMR (CDCI3) 8 2.57-2.63 (m, 2H), 

2.79-2.85 (m, 2H), 6.80-6.88 (m, IH), 7.15-7.37 (m, 8H), 7.42-7.46 (m, 4H), 7.73-7.76 (m, 

IH); 13C NMR (CDC13) 8 37.0,39.9, 51.4,99.9, 122.0,126.8,126.9,127.9,128.2,128.5, 
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128.8, 128.9, 129.7, 129.9, 132.3, 139.5, 139.6,143.3; IR (neat) 3062, 3036, 2964, 2933, 

2238 cm'1; HRMS m/z 423.04889 (calcd for C^HiglN, 423.04840). 

2-Cyano-3-(2-iodophenyl)-2-methylpropanenilrile (li) was prepared according to a 

procedure by Diez-Barra.36 A neat mixture of malononitrile (0.66 g, 10.0 mmol), Mel (0.31 

mL, 5.0 mmol), and n-BmNBr (0.064 g, 0.2 mmol) was stirred for 30 min at room 

temperature and cooled to 0 °C. Upon addition of dry K2CO3 (0.69 g, 5.0 mmol), the 

reaction mixture was stirred at 0 °C for 15 min, extracted with CH2CI2, and the organic layer 

was dried with Na2SO.t. 2-Methylpropanedinitrile (0.22 g, 2.75 mmol, 55%) was isolated 

after column chromatography using CH2CI2 The nitrile (0.22 g, 2.75 mmol) was mixed with 

o-iodobenzyl bromide (0.90 g, 3.03 mmol), n-BiuNBr (0.035 g, 0.11 mmol) and benzene (0.5 

mL), stirred for 30 min at room temperature, dry K2CO3 (0.42 g, 3.03 mmol) was added, and 

stirring was continued for 5 h. The reaction mixture was extracted with CH2CI2, the extract 

was dried (Na2S04), the solvent was evaporated and the mixture was separated by column 

chromatography using 2:1 hexanes/ethyl acetate to afford 0.506 g (34%) of li: white solid, 

mp 51-52 °C (hexanes/ethyl acetate); 'H NMR (CDCI3) 5 1.89 (s, 3H), 3.50 (s, 2H), 7.07 (td, 

J = 7.6, 1.6 Hz, IH), 7.41 (td, J = 7.2, 1.2 Hz, IH), 7.54 (dd, J - 7.2, 1.6 Hz, IH), 7.93 (dd, J 

= 8.0, 1.2 Hz, IH); l3C NMR (CDCI3) 5 24.4, 32.6,46.7, 102.3, 115.7, 128.9, 130.4, 130.6, 

135.2, 140.4; IR (neat) 3062, 3005, 2938, 2248 cm'1; HRMS m/z 295.98160 (calcd for 

Ct,H9IN2, 295.98105). 

3-(2-Iodo-4-nilrophenyl)-2,2-dimethylpropanenilrile (lr) and 3-(2-iodo-5-

nitrophenyl)-2,2-dimethylpropanenitrile (Is). To a solution of la (0.88 g, 3.09 mmol) in 3 

ml of acetic anhydride at 0 °C was added 1.5 ml of white fuming nitric acid. The reaction 

mixture was allowed to warm up to room temperature and stirred overnight, poured into ice-

water, and extracted with ether. The combined ethereal extracts were washed successively 

with aq NaHCOs and water, and dried over Na2SO<. The solvent was removed and the 

residue chromatographed using 4:1 hexanes/ethyl acetate to afford 0.415 g (41%, R/= 0.40) 

of lr and 0.165 g (16%, R/= 0.26) of Is. Nitrile lr: light yellow solid, mp 115-117 °C (4:1 

hexanes/ethyl acetate); lH NMR (CDCI3) 5 1.50 (s, 6H), 3.19 (s, 2H), 7.83 (dd, J = 8.7,2.7 

Hz, IH), 8.11 (d,/= 8.7 Hz, IH), 8.30 (d, / = 2.7 Hz, IH); l3C NMR (CDC13) 5 26.8, 34.1, 

48.8,110.6, 123.3, 123.7,124.8, 141.1,148.1 (1 sp2 carbon missing due to overlap); IR 
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(neat) 3068, 2984,2934, 2226, 1524,1343 cm"1; HRMS m/z 329.98693 (calcd for 

C11H11IN2O2, 329.98653). Nitrile Is: light yellow solid, mp 59-60 °C (4:1 hexanes/ethyl 

acetate); lH NMR (CDC13) ô 1.49 (s, 6H), 3.27 (s, 2H), 7.48-7.55 (m, 2H), 7.71-7.75 (m, 

1H); 13C NMR (CDC13) ô 26.7, 34.4,49.3,93.8, 123.3,124.1, 129.1,133.0, 142.7 (1 sp2 

carbon missing due to overlap); IR (neat) 3072, 2983, 2235, 1528, 1350 cm'1; HRMS m/z 

329.98693 (calcd forCuHnDS^Oz, 329.98653). 

3-(4-Cyano-2-iodophenyl)-2,2-dimethylpropanenitrile (It). A solution of SnCh (1.05 

g, 5.5 mmol) in 5 mL of a 5:4:1 DME-EtOH-AcOH solvent mixture was added dropwise, 

with stirring, to a solution of lr (0.23 g, 0.7 mmol) in 3 mL of the same solvent mixture 

under Ar at room temperature. The reaction mixture was stirred at room temperature for 5 

min, and then heated at 60 °C until the starting material was consumed (about 1.5 h). The 

reaction mixture was then poured into aq NaHCO] and extracted with ether. The extracts 

were dried (Na2S04), evaporated, and chromatographed using 1:1 hexanes/ethyl acetate to 

afford 0.21 g (100%) of 3-(4-amino-2-iodophenyl)-2,2-dimethylpropanenitrile, which was 

immediately converted to It according to a procedure by Rapaport.37 A solution of NaNOz 

(0.046 g, 0.67 mmol) in 0.3 mL of water was added, with stirring, to a cold (0 °C) solution of 

3-(4-amino-2-iodophenyl)-2,2-dimethylpropanenitrile (0.2 g, 0.67 mmol) in 2 ml of 

concentrated HCl and 1 mL of ice-water. The mixture was stirred at 0 °C for 30 min, and the 

cold solution of the resulting diazonium salt was neutralized by addition of solid NazCOs and 

added slowly, with stirring, to a suspension of CuCN (0.064 g, 0.71 mmol) and NaCN (0.069 

g, 1.41 mmol) in 0.5 mL of H2O at 0 °C. The reaction mixture was stirred for 1 h at room 

temperature, the precipitate was dissolved in CH2CI2, the aqueous layer was discarded, and 

the organic layer was washed with water, dried over Na2SQ4 and evaporated to afford 0.108 

g (52%) of It: yellow solid, mp 135-136 °C (hexanes/ethyl acetate); lH NMR (CDCI3) 5 1.47 

(s, 6H), 3.12 (s, 2H), 7.23-7.28 (m, IH), 7.32 (d, 7= 1.8 Hz, 1H), 8.04 (d, J - 7.5 Hz, 1H); 

l3C NMR (CDCb) 8 26.6,34.0,48.5, 108.6,112.6, 117.7, 123.8, 131.6, 133.2, 140.8, 141.0; 

IR (neat) 3055,2985, 2924, 2228 cm"1; HRMS m/z 309.99725 (calcd for C12H11IN2, 

309.99670). 

3-(2-Iodophenyl)-2,2-dImethyl-3-trimethylsilyIoxypropanenitrile (lj) was prepared 

according to the procedure of Silverman.38 To a solution of the lithium salt of 
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isobutyronitrile prepared from 0.77 mL (8.5 mmol) of the nitrile according to the procedure 

of Taber et alP in 10 mL of THF at -78 °C under Ar was added a solution of o-

iodobenzaldehyde (2.0 g, 8.62 mmol) in 3 mL of THF. The reaction mixture was stirred for 

45 min at -78 °C, then MesSiCl (1.72 mL, 13.6 mmol) was added, followed by MeOH (2 

mL) 10 min later. The reaction mixture was allowed to warm up to room temperature, the 

solvent was evaporated, the residue was taken up into ethyl acetate, washed with water, and 

dried over NazSO*. The solvent was removed and the residue was chromatographed using 

10:1 hexanes/ethyl acetate to afford a 69% yield of lj: white solid, mp 65-66 °C; lH NMR 

(CDCb) 5 0.02 (s, 9H), 1.26 (s, 3H), 1.52 (s, 3H), 4.83 (s, IH), 7.00-7.04 (td, 7=7.6, 1.2 Hz, 

IH), 7.38-7.42 (td, 7 = 7.6, 1.2 Hz, IH), 7.74-7.76 (dd, 7 = 8.0, 1.6 Hz, IH), 7.80-7.83 (m, 

IH); ,3C NMR (CDCl3) ô -0.0, 22.8,25.2,41.1, 81.2,99.9,123.5, 128.5, 129.5,130.1,139.2, 

142.1; IR (neat) 3067, 2949, 2235 cm'1; HRMS m/z 373.03653 (calcd for Cl4H2oINOSi, 

373.03589). 

3-Hydroxy-3-(2-iodophenyl)-2,2-dimethylpropanenitrile (lk). Compound lj (1.84 g, 

4.93 mmol) was dissolved in 40 mL of THF containing 6 mL of a 1M solution of n-ButNF. 

The reaction mixture was stirred for 5 h at room temperature, concentrated, diluted with 

brine, and extracted with CH2CI2. The organic extracts were washed with brine, dried 

(NaiSOj), evaporated, and the residue was chromatographed with 4:1 hexanes/ethyl acetate 

to afford 1.37 g (93 %) of lk as a very viscous bright yellow oil: *H NMR (CDCI3) ô 1.27 (s, 

3H), 1.61 (s, 3H), 2.60 (d, 7 = 4.0 Hz, 1H), 4.94 (d, 7 = 4.0 Hz, 1H). 7.03-7.07 (m, 1H), 7.44 

(td, 7= 8.0, 1.6 Hz, 1H), 7.79 (dd, 7= 8.0,1.6 Hz, 1H), 7.85 (dd, 7 = 8.0, 1.2 Hz, 1H); l3C 

NMR (CDCI3) ô 23.0, 25.3,40.3, 100.2, 123.2, 128.4, 128.9,130.5, 139.6, 141.6; IR (neat) 

3448, 3067, 2986, 2940, 2242 cm'1; HRMS m/z 300.99726 (calcd for CuH,2INO, 

300.99637). 

3-(2-Iodophenyl)-3-methoxy-2,2-dimethylpropanenitrile (11). Compound lk was 

methylated according to a procedure by Melder.39 To a stirred suspension of NaH (0.025 g, 

1.05 mmol) in 2 mL of THF at 0 °C under Ar was added a solution of lk (0.301 g, 1.0 mmol) 

in 3 mL of THF. After stirring for 45 min at room temperature, Mel (0.125 mL, 2.0 mmol) 

was added and stirring was continued overnight at room temperature. The reaction mixture 

was then quenched with satd aq NH4CI, diluted with water and extracted with ether. The 
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extracts were dried (Na2S04), evaporated, and the residue was chromatographed using 4:1 

hexanes/ethyl acetate to afford 0.262 g (83%) of II: colorless oil; lH NMR (CDCI3) 8 1.25 (s, 

3H), 1.59 (s, 3H), 3.22 (s, 3H), 4.47 (s, IH), 7.04-7.10 (m, IH), 7.42-7.48 (m, IH), 7.67-7.70 

(dd, 7= 7.8, 1.8 Hz, IH), 7.85-7.88 (m, IH); 13C NMR (CDCI3) 5 23.0, 25.4, 39.5, 57.1, 

89.0, 101.7, 123.1, 128.5, 128.8, 130.4, 138.9, 139.5; IR (neat) 3061, 2986, 2938,2821, 

2234 cm1; HRMS m/z 315.01242 (calcd for Cl2Hl4INO, 315.01202). 

3-Acetoxy-3-(2-iodophenyl)-2,2-dimethylpropanenitrile (lm) was prepared according 

to a published procedure.40 Compound lk (0.452 g, 1.5 mmol), DMAP (0.046 g, 0.375 

mmol) and Ac20 (0.21 mL, 2.25 mmol) were dissolved in 0.3 mL of EtsN, and the reaction 

mixture was stirred overnight at room temperature. Methanol was added to remove excess 

acetic anhydride, then the mixture was concentrated on a rotary evaporator, the residue was 

dissolved in ether, washed with water, dilute aq HCl, dilute aq NaHCOs, and brine, and dried 

over Na2S04. The solvent was evaporated and the residue was recrystallized from 4:1 

hexanes/ethyl acetate to afford 0.398 g (77%) of lm: beige solid, mp 127-128 °C; lH NMR 

(CDCI3) 8 1.34 (s, 3H), 1.58 (s, 3H), 2.14 (s, 3H), 5.93 (s, IH), 7.03-7.09 (m, IH), 7.39-7.45 

(m, IH), 7.68 (dd, 7=7.8, 1.5 Hz, IH), 7.86 (dd, 7=7.8, 1.2 Hz, IH); l3C NMR (CDCl3) 8 

20.8,23.3, 25.4, 38.9, 81.0, 100.7, 122.3, 128.2, 128.8, 130.6,138.6, 139.7, 169.3; IR (neat) 

3071, 2999, 2989, 2236, 1745 cm '; HRMS m/z 343.00693 (calcd for Ct3Hi4lN02, 

343.00736). 

3-(2-Iodophenyl)-2,2-dimethyl-3-oxopropanenitrile (In) was prepared according to the 

general procedure for the alkylation of aliphatic ni tri les using isobutyronitrile (0.18 mL, 2.0 

mmol) and methyl o-iodobenzoate (0.55 g, 2.1 mmol) instead of o-iodobenzyl bromide. The 

residue was chromatographed using 4:1 hexanes/ethyl acetate to afford 0.431 g (72 %) of In 

as a yellow oil: lH NMR (CDC13) 8 1.73 (s, 6H), 7.16-7.22 (m, IH), 7.41-7.49 (m, 2H), 7.92 

(dd, 7 = 7.2,0.9 Hz, IH); I3C NMR (CDC13) 8 24.9,43.7,90.9,121.2, 126.4,127.7, 131.6, 

139.8, 143.1,199.6; IR (neat) 3060,2938, 2238,1714 cm"1; HRMS m/z 298.98164 (calcd for 

CuHioINO, 298.98072). 

3-(4-{3-Bromopyridyl})-3-hydroxy-2,2«dimetiiylpropanenitrile (3) was prepared 

according to the general procedure for the alkylation of aliphatic nitriles using 

isobutyronitrile (0.181 mL, 2.0 mmol) and 3-bromopyridine-4-carbaldehyde (0.378 g, 2.03 
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mmol) instead of o-iodobenzyl bromide. The residue was chromatographed using 2:1 

hexanes/ethyl acetate to afford 0.203 g (40%) of 3: white solid, mp 125-127 °C; *H NMR 

(CDC13) 8 1.27 (s, 3H), 1.59 (s, 3H), 4.73 (br s, IH), 5.03 (s, 1H), 7.76 (d, 7 = 4.8 Hz, 1H), 

8.45 (d, 7 = 4.8 Hz, 1H), 8.56 (s, IH); l3C NMR (CDC13) S 22.6, 24.8, 39.8, 74.5, 121.9, 

122.6, 124.1, 148.2, 148.4, 151.4; IR (neat) 3407, 3087, 2938,2238 cm"1; HRMS m/z 

254.00592 (calcd for CI0HuBrN2O, 254.00547). 

2-Cyano-2'-iodobiphenyl (4) was prepared by modifying the procedure of Grinham.41 A 

mixture of 2,2'-diiodobiphenyl (0.406 g, 1 mmol), CuCN (0.09 g, 1 mmol) and pyridine (2 

mL) was heated at 150 °C for 6 h, cooled to room temperature, dissolved in benzene and 

washed with a 1:1 NH4OH (aq., 30%)/water mixture. The benzene extract was dried 

(NaiSO»), evaporated, and chromatographed using 4:1 hexanes/ethyl acetate to afford 0.092 

g (30 %) of the target biaryl 4 as a white solid: mp 71-72 °C (lit.41 mp 73-74 °C), along with 

unreacted starting material (25%) and 2,2'-dicyanobiphenyl (29%); lH NMR (CDCI3) S 7.13 

(td, / = 7.8, 1.5 Hz, IH), 7.30-7.53 (m, 4H), 7.63-7.70 (m, IH), 7.74-7.77 (m, IH), 7.97 (dd, 

7 = 8.1, 1.5 Hz, IH); l3C NMR (CDC13) 8 98.3, 112.8, 117.6, 128.2, 128.3, 129.8, 130.2, 

130.6, 132.3, 132.7, 139.4, 143.0, 143.7; IR (neat) 3059, 2225 cm"1. 

General Procedure for the Pd-Catalyzed Cyclization of ti>(2-Iodoaryl)-

alkanenitriles. All reactions were performed under an Ar atmosphere. 0.25 Mmol of the to-

(2-iodoaryl)alkanenitrile, 0.025 mmol (10 mol %) of Pd(OAc)i, and 0.05 mmol (20 mol %) 

of PhsP were dissolved in 4.5 mL of DMF and 0.5 mL of water, and 0.3 mmol (1.2 equiv) of 

EtsN were added to the solution. The reaction mixture was stirred at 130 °C for the 

appropriate amount of time. Then, the reaction mixture was allowed to cool to room 

temperature and poured into 25 mL of diethyl ether. The ether solution was washed with aq 

NHiCl and dried over NaiSO^. The identity of all known products was established by GC-

mass spectrometry and *H NMR spectroscopy of the reaction mixtures. The yields of known 

products were determined by *H NMR spectroscopy by integration of the appropriate 

outstanding signals using 1,4-dimethoxybenzene as an internal standard. New products were 

isolated by column chromatography on a silica gel column. The following known 

compounds were prepared using the above procedure: 2,2-dimethyl-1-indanone (2a),42 

spiro[cyclohexane-l,2'-indan]-r-one (2b),43 2-methyl-2-phenyl-l-indanone (2e),44 2,2-



www.manaraa.com

99 

diphenyl-1 -indanone (2f),45 2-ethyl- 1-indanone (2g),46 3-hydroxy-2,2-dimethyl-l-indanone 

(2k),47 3-methoxy-2,2-dimethyl-1-indanone (21),48 2,2-dimethyl-1,3-indandione (2n),49 2,2-

dimethyl-6-nitro-1 -indanone (2r),50 9-fluorenone (5),51 2,2-dimethyl-1 -tetralone (9a),52 3',4'-

dihydrospiro[cyclohexane-1,2' ( l'H)-naphthalen]-1 ' -one (9c),53 6,6-dimethyl-6,7,8,9-

tetrahydrobenzocyclohepten-5-one (10),54 3,5,5-trimethy 1-2-pheny lcyclopent-2-en-1 -one 

(12b),55 and 5,5-dimethyl-3-phenylcyclopent-2-en-l-one (12d).56 

Spiro[cyclobutane-l^'-indan]-l'-one (2c) was obtained as a colorless oil in an 83% 

isolated yield from lc according to the general procedure after column chromatography using 

10:1 hexanes/ethyl acetate: lH NMR (CDC13) 8 2.00-2.20 (m, 4H), 2.47-2.54 (m, 2H), 3.30 

(s, 2H), 7.33-7.43 (m, 2H), 7.57 (td, J = 7.5, 1.2 Hz, IH), 7.76 (dd, / = 7.5, 1.6 Hz, IH); l3C 

NMR (CDC13) 8 16.1, 31.6,42.2, 50.7, 124.0, 126.2, 127.3, 134.6, 135.9, 152.3, 209.3; IR 

(neat) 3077, 2933, 2845, 1702, 1604 cm '; HRMS m/z 172.08900 (calcd for Cl2H|20, 

172.08882). 

Methyl 2-methyl-l-indanone-2-carboxylate (2h), a known compound, was obtained as 

a white solid, mp 57-58 (lit.57 mp 57-58 °C), in a 73% isolated yield from lh according to the 

general procedure after column chromatography using 4:1 hexanes/ethyl acetate. The 78% 

yield determined by H NMR spectroscopy was obtained straight from the reaction mixture. 

The spectral properties were identical to those previously reported.57 

2-Cyano-2-methyl-l-indanone (2i) was obtained as a light yellow oil in an 89% isolated 

yield from li according to the general procedure after column chromatography using 4:1 

hexanes/ethyl acetate: 'H NMR (CDCI3) 8 1.67 (s, 3H), 3.24 (d, / = 13.2 Hz, IH), 3.76 (d, / 

= 13.2 Hz, IH), 7.47-7.52 (m, 2H), 7.70-7.74 (m, IH), 7.83-7.86 (m, IH); l3C NMR (CDC13) 

8 23.7,40.5,43.2,120.6, 125.9, 126.9,129.0,133.0, 136.7, 150.5, 198.5; IR (neat) 3058, 

2982, 2934,2241, 1724 cm '; HRMS m/z 171.06867 (calcd for CuH9NO, 171.06841). 

3-Acetoxy-2^-dimethyl-l-indanone (2m) was obtained as a colorless oil in an 80% 

isolated yield from lm according to the general procedure (reaction time 40 h) after column 

chromatography using 4:1 hexanes/ethyl acetate: 'H NMR (CDC13) 8 1.14 (s, 3H), 1.33 (s, 

3H), 2.18 (s, 3H), 6.09 (s, IH), 7.53 (td, J = 7.6,0.4 Hz, IH), 7.59 (dd, J = 7.6,0.4 Hz, IH), 

7.69 (td, 7=7.6,1.2 Hz, IH), 7.79 (d, 7 = 7.6 Hz, IH); I3C NMR (CDC13) 8 19.6,20.8, 24.0, 
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49.7,78.5, 123.9, 126.6, 129.9, 135.0, 135.3,149.3, 170.9,207.5; IR (neat) 3078,2969, 

2933, 2872, 1728, 1604 cm1; HRMS m/z 218.09456 (calcd forC13Hl403, 218.09429). 

5,6-Dimethoxy-2v2-dimethyl-l-indanone (2o) was obtained in a 75% isolated yield 

from lo according to the general procedure after column chromatography using 2:1 

hexanes/ethyl acetate: white solid, mp 97-98 °C; lH NMR (CDCI3) 8 1.23 (s, 6H), 2.92 (s, 

2H), 3.92 (s, 3H), 3.97 (s, 3H), 6.85 (s, IH), 7.19 (s, IH); l3C NMR (CDC13) 8 25.4,42.6, 

45.7, 56.0, 56.1, 104.8, 107.4, 127.8, 147.3,149.4, 155.5, 210.1; IR (neat) 3066, 2984, 2867, 

2832, 1684 cm"1; HRMS m/z 220.11016 (calcd forCl3H,603, 220.10994). 

5,6-Dimethoxy-2,2-diphenyl-1-indanone (2p) was obtained in an 84% isolated yield 

from lp according to the general procedure after recrystallization from ethyl acetate: off-

white solid, mp 172-174 °C; *H NMR (CDC13) 6 3.83 (s, 2H), 3.91 (s, 3H), 4.00 (s, 3H), 6.94 

(s, IH), 7.18-7.32 (m, 1 IH); ,3C NMR (CDC13) 8 44.8, 56.1, 56.3,62.9, 105.3, 106.7, 126.6, 

128.0, 128.1, 128.2, 128.3, 143.7, 147.3, 149.7, 155.9, 203.9; IR (neat) 3080, 3066, 2984, 

2834, 1699 cm"1; HRMS m/z 344.14185 (calcd for C23H20O3, 344.14124). 

5-Bromo-2,2-dimethyl-l-indanone (2q) was obtained as a colorless oil in a 64% 

isolated yield from lq according to the general procedure after column chromatography 

using 4:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.24 (s, 6H), 2.99 (s, 2H), 7.50-7.53 (m, 

IH), 7.61-7.63 (m, 2H); l3C NMR (CDC13) 8 25.2,42.5,45.7, 125.7, 129.9,130.1, 131.1, 

134.2, 153.8, 210.0; IR (neat) 3063, 2965, 2927, 2867, 1716, 1591 cm"1; HRMS m/z 

237.99971 (calcd for CuHuBrO, 237.99933). 

6-Cyano-2,2-dimethy 1-1 -indanone (21) was obtained in a 43% yield from It according 

to the general procedure. This product could not be separated from the reduced starting 

material by column chromatography; its yield was determined by H NMR spectroscopy 

performed on the crude compound by integrating the methylene signal at 3.06 ppm (2H) and 

the dimethyl signal at 1.26 ppm (6H). 

2,2-Diphenyl-l-tetralone (9b) was obtained in a 55% isolated yield from 7b according 

to the general procedure after column chromatography using 10:1 hexanes/ethyl acetate: 

white solid, mp 99-101 °C (hexanes/ethyl acetate); H NMR (CDCI3) 8 2.85-2.95 (m, 4H), 

7.12-7.15 (m, 5H), 7.22-7.33 (m, 7H), 7.40-7.46 (m, IH), 8.19 (dd, 7=7.8,1.5 Hz, IH); 13C 

NMR (CDC13) 8 26.4,35.1,59.9, 126.7,126.9,128.1, 128.4,128.6,133.0, 133.2, 142.0, 
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143.3,198.8 (1 sp2 carbon missing due to overlap); IR (neat) 3061,3026, 2934, 1685 cm'1; 

HRMS m/z 298.13629 (calcd for C22Hl80,298.13577). 

5,5-Dimetliyl-2,3-dipheiiyIcyclopent-2-en-l-one (12a) was obtained as a yellow oil in a 

94% isolated yield from lia according to the general procedure after column 

chromatography using 4:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.29 (s, 6H), 2.93 (s, 

2H), 7.21-7.34 (m, 10H); t3C NMR (CDC13) 8 25.5,43.4,46.6,127.7, 128.1, 128.3, 129.5, 

129.7, 132.5, 135.7, 137.0, 164.5,211.7 (1 sp2 carbon missing due to overlap); IR (neat) 

3055, 3023,2961, 2926, 1694 cm'1; HRMS m/z 262.13617 (calcd for C19HI80, 262.13577). 

3,5»5-Trimethyl-2-phenylcyclopent-2-en-l-one (12b), a known compound, was 

obtained as a light yellow oil in a 72% isolated yield from lib according to the general 

procedure after column chromatography using 10:1 hexanes/ethyl acetate: l3C NMR (CDCI3) 

8 18.2, 25.2,43.3,48.9, 127.4, 128.1,129.1, 132.1, 137.4, 168.2, 211.6; HRMS m/z 

200.12051 (calcd for C^H^O, 200.12012). Other spectral properties were identical to those 

previously reported.55 

2,5,5-Trimethyl-3-phenylcyclopent-2-en-l-one (12c) was obtained as a colorless oil in 

an 82% isolated yield from lie according to the general procedure after column 

chromatography using 10:1 hexanes/ethyl acetate: lH NMR (CDCI3) 8 1.20 (s, 6H), 1.99 (t, J 

= 2.0 Hz, 3H), 2.79 (q, J = 2.0 Hz, 2H), 7.40-7.48 (m, 3H), 7.52-7.55 (m, 2H); l3C NMR 

(CDCI3) 8 10.3, 25.4,42.6,46.3,127.6, 128.5, 129.4, 133.6, 136.3, 163.1,214.0; IR (neat) 

3057,2959, 2923, 2866, 1697 cm'1; HRMS m/z 200.12051 (calcd forC14Hl60, 200.12012). 

5-Ethyl-2,3-diphenylcyclopent-2-en-l-one (14) was obtained as an amber oil in a 63% 

isolated yield from 13 according to the general procedure after column chromatography using 

10:1 hexanes/ethyl acetate: 'H NMR (CDC13) 8 1.06 (t, / = 7.2 Hz, 3H), 1.52-1.65 (m, IH), 

1.95-2.05 (m, IH), 2.60-2.65 (m, IH), 2.72 (dd,/= 18.0, 2.8 Hz, IH), 3.22 (dd, J ~ 18.0,6.8 

Hz, IH), 7.19-7.32 (m, 10H); 13C NMR (CDC13) 8 11.5,24.9, 36.1,46.9, 127.7,128.1, 128.4, 

129.4, 129.5, 129.7, 132.4, 135.7, 139.2, 166.5, 209.4; IR (neat) 3088, 3052, 2959, 2933, 

1697,1346 cm'1; HRMS m/z 262.13617 (calcd forC19H180,262.13577). 

2-Cyano-3,4-dihydronapthalene (6) was obtained in a 58% isolated yield from Id 

according to the general procedure after column chromatography using 4:1 hexanes/ethyl 

acetate. The 64% yield determined by H NMR spectroscopy was obtained straight from the 
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reaction mixture. Compound 6: white solid, mp 58-59 °C (lit.58 58-59 °C); *H NMR (CDCI3) 

6 2.51 (td, 7 = 8.0, 1.6 Hz, 2H), 2.88 (t,/=8.0 Hz, 2H), 7.11-7.20 (m, 3H), 7.22-7.29 (m, 

2H); I3C NMR (CDC13) 5 24.7, 26.7, 109.7,119.7, 127.1, 127.9, 128.0, 130.2, 131.2, 135.4, 

141.7; IR (neat) 3067,3019, 2944,2894, 2206,1622, 1452 cm '; HRMS m/z 155.073718 

(calcd forC,,H9N, 155.07350). 
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GENERAL CONCLUSION 

The cyano group has long been considered unreactive towards organopalladium 

reagents. We have investigated the intramolecular carbopalladation of nitrites and have 

found that not only can it proceed with high efficiency, but also can be developed into 

useful synthetic methodology for the construction of carbocyclic molecules. 

2,3-Diarylindenones and polycyclic aromatic ketones are synthesized in very good 

yields by a convenient procedure for the palladium-catalyzed annulation of internal 

alkynes and bicyclic olefins by 2-iodobenzonitrile. This reaction tolerates a variety of 

functional groups and can be extended to substituted 2-iodoarenenitriles and related 

heterocyclic compounds. Mechanistically, the annulation proceeds via a nucleophilic 

intramolecular addition of the vinyl- or alkylpalladium species across the carbon-nitrogen 

triple bond of the neighboring cyano group. 

The palladium-catalyzed annulation of alkynes with (2-iodophenyl)acetonitrile results 

in the synthesis of 3,4-disubstituted 2-aminonaphthalenes in good yields. In many cases, 

the regioselectivity of this reaction is excellent. The scope and limitations of this process, 

which proceeds via a mechanism similar to the reaction between 2-iodoarenenitriles and 

alkynes, have been studied. Annulation of hindered propargylic alcohols has been found 

to afford 1,3-benzoxazine derivatives. The involvement of trialkylamine bases in the 

formation of these heterocyclic compounds has been established and a mechanism for 

this transformation has been proposed. 

The nitrile carbopalladation has also been employed in developing useful 

methodology for the synthesis of 2,2-disubstituted indanones by the palladium-catalyzed 

cyclization of 3-(2-iodoaryl)propanenitriles. A variety of indanones have been prepared 

in high yields from readily available starting materials containing various functional 

groups that are compatible with the reaction conditions. The reaction is not limited to the 

synthesis of indanones as other benzocyclic ketones, as well as a number of substituted 

cyclopentenones, have been synthesized by this methodology. 



www.manaraa.com

108 

APPENDIX A. CHAPTER 1 H AND 13C NMR SPECTRA 
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